Modeling the Mood State on Thermal Sensation With a Data Mining Algorithm and Testing the Accuracy of Mood State Correction Factor
dc.authorid | OZBEY, Mehmet Furkan/0000-0002-5813-3514 | |
dc.authorscopusid | 36015912400 | |
dc.authorscopusid | 57219871456 | |
dc.authorscopusid | 56011415300 | |
dc.authorwosid | OZBEY, Mehmet Furkan/GLU-8252-2022 | |
dc.contributor.author | Yerlikaya-Ozkurt, Fatma | |
dc.contributor.author | Ozbey, Mehmet Furkan | |
dc.contributor.author | Turhan, Cihan | |
dc.contributor.other | Energy Systems Engineering | |
dc.contributor.other | Industrial Engineering | |
dc.contributor.other | Mechanical Engineering | |
dc.date.accessioned | 2024-10-06T11:17:09Z | |
dc.date.available | 2024-10-06T11:17:09Z | |
dc.date.issued | 2025 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Yerlikaya-Ozkurt, Fatma] Atilim Univ, Fac Engn, Dept Ind Engn, Ankara, Turkiye; [Ozbey, Mehmet Furkan] Atilim Univ, Grad Sch Nat & Appl Sci, Dept Mech Engn, Ankara, Turkiye; [Turhan, Cihan] Atilim Univ, Fac Engn, Dept Energy Syst Engn, Ankara, Turkiye | en_US |
dc.description | OZBEY, Mehmet Furkan/0000-0002-5813-3514 | en_US |
dc.description.abstract | Psychology is proven as an influencing factor on thermal sensation. On the other hand, mood state is one of the significant parameters in psychology field. To this aim, in the literature, mood state correction factor on thermal sensation (Turhan and Ozbey coefficients) is derived utilizing with data-driven black-box model. However, novel models which present analytical form of the mood state correction factor should be derived based on the several descriptive variables on thermal sensation. Moreover, the result of this factor should also be checked with analytical model results. Therefore, this study investigates the modelling of mood state correction factor with a data mining algorithm, called Multivariate Adaptive Regression Splines (MARS). Additionally, the mood state is also taken as a thermal sensation parameter besides environmental parameters in this algorithm. The same data, which are collected from a university study hall in a temperate climate zone, are used and the model results are compared with the thermal sensation results based on mood state correction factor which is driven via black-box model. The results show that coefficient of correlation "r" between the MARS and black-box model is found as 0.9426 and 0.9420 for training and testing. Hence, the mood state is also modelled via a data mining algorithm with a high accuracy, besides the black-box model. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkiye (TUBITAK) [120M890] | en_US |
dc.description.sponsorship | This work was supported by the Scientific and Technological Research Council of Turkiye (TUBITAK) [Project Number: 120M890]. | en_US |
dc.description.woscitationindex | Social Science Citation Index | |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.newideapsych.2024.101124 | |
dc.identifier.issn | 0732-118X | |
dc.identifier.issn | 1873-3522 | |
dc.identifier.scopus | 2-s2.0-85204602369 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1016/j.newideapsych.2024.101124 | |
dc.identifier.volume | 76 | en_US |
dc.identifier.wos | WOS:001322573800001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Yerlikaya Özkurt, Fatma | |
dc.institutionauthor | Özbey, Mehmet Furkan | |
dc.institutionauthor | Turhan, Cihan | |
dc.institutionauthor | Yerlikaya Özkurt, Fatma | |
dc.institutionauthor | Özbey, Mehmet Furkan | |
dc.institutionauthor | Turhan, Cihan | |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-elsevier Science Ltd | en_US |
dc.relation.ispartof | New Ideas in Psychology | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Adaptive thermal comfort | en_US |
dc.subject | Human behaviour | en_US |
dc.subject | Psychology | en_US |
dc.subject | Profile of mood states (POMS) | en_US |
dc.subject | Multivariate adaptive regression splines (MARS) | en_US |
dc.title | Modeling the Mood State on Thermal Sensation With a Data Mining Algorithm and Testing the Accuracy of Mood State Correction Factor | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 3fb69d84-e2ef-4946-921b-dfeb392badec | |
relation.isAuthorOfPublication | 702ce1f6-d478-4266-9092-b97ae8ec9f83 | |
relation.isAuthorOfPublication | 14edd55f-2035-410b-a400-63a1319bdfe5 | |
relation.isAuthorOfPublication.latestForDiscovery | 3fb69d84-e2ef-4946-921b-dfeb392badec | |
relation.isOrgUnitOfPublication | 80f84cab-4b75-401b-b4b1-f2ec308f3067 | |
relation.isOrgUnitOfPublication | 12c9377e-b7fe-4600-8326-f3613a05653d | |
relation.isOrgUnitOfPublication | d2cd5950-09a4-4d1d-976e-01f8f7ee4808 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 80f84cab-4b75-401b-b4b1-f2ec308f3067 |