Modeling the Mood State on Thermal Sensation With a Data Mining Algorithm and Testing the Accuracy of Mood State Correction Factor

dc.authoridOZBEY, Mehmet Furkan/0000-0002-5813-3514
dc.authorscopusid36015912400
dc.authorscopusid57219871456
dc.authorscopusid56011415300
dc.authorwosidOZBEY, Mehmet Furkan/GLU-8252-2022
dc.contributor.authorYerlikaya-Ozkurt, Fatma
dc.contributor.authorOzbey, Mehmet Furkan
dc.contributor.authorTurhan, Cihan
dc.contributor.otherEnergy Systems Engineering
dc.contributor.otherIndustrial Engineering
dc.contributor.otherMechanical Engineering
dc.date.accessioned2024-10-06T11:17:09Z
dc.date.available2024-10-06T11:17:09Z
dc.date.issued2025
dc.departmentAtılım Universityen_US
dc.department-temp[Yerlikaya-Ozkurt, Fatma] Atilim Univ, Fac Engn, Dept Ind Engn, Ankara, Turkiye; [Ozbey, Mehmet Furkan] Atilim Univ, Grad Sch Nat & Appl Sci, Dept Mech Engn, Ankara, Turkiye; [Turhan, Cihan] Atilim Univ, Fac Engn, Dept Energy Syst Engn, Ankara, Turkiyeen_US
dc.descriptionOZBEY, Mehmet Furkan/0000-0002-5813-3514en_US
dc.description.abstractPsychology is proven as an influencing factor on thermal sensation. On the other hand, mood state is one of the significant parameters in psychology field. To this aim, in the literature, mood state correction factor on thermal sensation (Turhan and Ozbey coefficients) is derived utilizing with data-driven black-box model. However, novel models which present analytical form of the mood state correction factor should be derived based on the several descriptive variables on thermal sensation. Moreover, the result of this factor should also be checked with analytical model results. Therefore, this study investigates the modelling of mood state correction factor with a data mining algorithm, called Multivariate Adaptive Regression Splines (MARS). Additionally, the mood state is also taken as a thermal sensation parameter besides environmental parameters in this algorithm. The same data, which are collected from a university study hall in a temperate climate zone, are used and the model results are compared with the thermal sensation results based on mood state correction factor which is driven via black-box model. The results show that coefficient of correlation "r" between the MARS and black-box model is found as 0.9426 and 0.9420 for training and testing. Hence, the mood state is also modelled via a data mining algorithm with a high accuracy, besides the black-box model.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkiye (TUBITAK) [120M890]en_US
dc.description.sponsorshipThis work was supported by the Scientific and Technological Research Council of Turkiye (TUBITAK) [Project Number: 120M890].en_US
dc.description.woscitationindexSocial Science Citation Index
dc.identifier.citation0
dc.identifier.doi10.1016/j.newideapsych.2024.101124
dc.identifier.issn0732-118X
dc.identifier.issn1873-3522
dc.identifier.scopus2-s2.0-85204602369
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.newideapsych.2024.101124
dc.identifier.volume76en_US
dc.identifier.wosWOS:001322573800001
dc.identifier.wosqualityQ2
dc.institutionauthorYerlikaya Özkurt, Fatma
dc.institutionauthorÖzbey, Mehmet Furkan
dc.institutionauthorTurhan, Cihan
dc.institutionauthorYerlikaya Özkurt, Fatma
dc.institutionauthorÖzbey, Mehmet Furkan
dc.institutionauthorTurhan, Cihan
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.ispartofNew Ideas in Psychologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive thermal comforten_US
dc.subjectHuman behaviouren_US
dc.subjectPsychologyen_US
dc.subjectProfile of mood states (POMS)en_US
dc.subjectMultivariate adaptive regression splines (MARS)en_US
dc.titleModeling the Mood State on Thermal Sensation With a Data Mining Algorithm and Testing the Accuracy of Mood State Correction Factoren_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication702ce1f6-d478-4266-9092-b97ae8ec9f83
relation.isAuthorOfPublication14edd55f-2035-410b-a400-63a1319bdfe5
relation.isAuthorOfPublication.latestForDiscovery3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isOrgUnitOfPublication80f84cab-4b75-401b-b4b1-f2ec308f3067
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublicationd2cd5950-09a4-4d1d-976e-01f8f7ee4808
relation.isOrgUnitOfPublication.latestForDiscovery80f84cab-4b75-401b-b4b1-f2ec308f3067

Files

Collections