Modeling thermal shock damage in refractory materials via direct numerical simulation (DNS)
dc.authorscopusid | 56976669000 | |
dc.authorscopusid | 7004112098 | |
dc.authorscopusid | 7004303989 | |
dc.authorwosid | Geers, Marc G.D./E-4385-2014 | |
dc.contributor.author | Ozdemir, I. | |
dc.contributor.author | Brekelmans, W. A. M. | |
dc.contributor.author | Geers, M. G. D. | |
dc.contributor.other | Manufacturing Engineering | |
dc.date.accessioned | 2024-07-05T15:11:41Z | |
dc.date.available | 2024-07-05T15:11:41Z | |
dc.date.issued | 2010 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Ozdemir, I.; Brekelmans, W. A. M.; Geers, M. G. D.] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands; [Ozdemir, I.] Atilim Univ, Dept Mfg Engn, Ankara, Turkey | en_US |
dc.description.abstract | In this paper, a computational investigation on thermo-mechanically induced damage in refractory materials resulting from severe thermal shock conditions is presented. On the basis of an idealized two-phase material system. molten aluminium thermal shock tests' are computationally modeled by means of direct numerical simulations (DNS) The interfacial and bulk damage evolution within the material arc described by Merino-mechanical cohesive zones and continuum damage mechanics (CDM), respectively Reported experimental results' are used to identify the parameters of the model Furthermore, a parametric study is carried out to investigate the relative significance of various microstructure parameters in the context of thermal shock response. (C) 2009 Elsevier Ltd All rights reserved | en_US |
dc.identifier.citationcount | 19 | |
dc.identifier.doi | 10.1016/j.jeurceramsoc.2009.12.014 | |
dc.identifier.endpage | 1597 | en_US |
dc.identifier.issn | 0955-2219 | |
dc.identifier.issn | 1873-619X | |
dc.identifier.issue | 7 | en_US |
dc.identifier.scopus | 2-s2.0-77249142810 | |
dc.identifier.startpage | 1585 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.jeurceramsoc.2009.12.014 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1466 | |
dc.identifier.volume | 30 | en_US |
dc.identifier.wos | WOS:000276174700003 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Özdemir, İzzet | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Sci Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 19 | |
dc.subject | Thermal shock | en_US |
dc.subject | Thermo-mechanical damage | en_US |
dc.subject | DNS model | en_US |
dc.subject | Thermo-mechanical cohesive zones | en_US |
dc.subject | Heterogeneous materials | en_US |
dc.title | Modeling thermal shock damage in refractory materials via direct numerical simulation (DNS) | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 16 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1617d326-76d8-4dfc-b18b-b2cb94f34662 | |
relation.isAuthorOfPublication.latestForDiscovery | 1617d326-76d8-4dfc-b18b-b2cb94f34662 | |
relation.isOrgUnitOfPublication | 9804a563-7f37-4a61-92b1-e24b3f0d8418 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 9804a563-7f37-4a61-92b1-e24b3f0d8418 |