Hydrogen Generation From Sodium Borohydride Hydrolysis by Multi-Walled Carbon Nanotube Supported Platinum Catalyst: a Kinetic Study

dc.authoridDEVRIM, YILSER/0000-0001-8430-0702
dc.authoridUZUNDURUKAN, ARIFE/0000-0003-1104-1644
dc.authorscopusid57208702706
dc.authorscopusid11139445500
dc.authorwosidUzundurukan, Arife/JKH-6503-2023
dc.authorwosidDEVRIM, YILSER/AAF-8790-2019
dc.contributor.authorUzundurukan, Arife
dc.contributor.authorDevrim, Yilser
dc.contributor.otherEnergy Systems Engineering
dc.date.accessioned2024-07-05T15:40:05Z
dc.date.available2024-07-05T15:40:05Z
dc.date.issued2019
dc.departmentAtılım Universityen_US
dc.department-temp[Uzundurukan, Arife; Devrim, Yilser] Atilim Univ, Energy Syst Engn Dept, Ankara, Turkeyen_US
dc.descriptionDEVRIM, YILSER/0000-0001-8430-0702; UZUNDURUKAN, ARIFE/0000-0003-1104-1644en_US
dc.description.abstractIn this study, it is aimed to investigate hydrogen (H-2) generation from sodium borohydride (NaBH4) hydrolysis by multi-walled carbon nanotube supported platinum catalyst (Pt/MWCNT) under various conditions (0-0.03 g Pt amount catalyst, 2.58-5.03 wt % NaBH4, and 27-67 degrees C) in detail. For comparison, carbon supported platinum (Pt/C) commercial catalyst was used for H-2 generation experiments under the same conditions. The reaction rate of the experiments was described by a power law model which depends on the temperature of the reaction and concentrations of NaBH4. Kinetic studies of both Pt/MWCNT and Pt/C catalysts were done and activation energies, which is the required minimum energy to overcome the energy barrier, were found as 27 kJ/mol and 36 kJ/mol, respectively. Pt/ MWCNT catalyst is accelerated the reaction less than Pt/C catalyst while Pt/MWCNT is more efficient than Pt/C catalyst, they are approximately 98% and 95%, respectively. According to the results of experiments and the kinetic study, the reaction system based on NaBH4 in the presence of Pt/MWCNT catalyst can be a potential hydrogen generation system for portable applications of proton exchange membrane fuel cell (PEMFC). (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.en_US
dc.identifier.citationcount44
dc.identifier.doi10.1016/j.ijhydene.2019.04.188
dc.identifier.endpage17594en_US
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.issue33en_US
dc.identifier.scopus2-s2.0-85065584145
dc.identifier.startpage17586en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2019.04.188
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3297
dc.identifier.volume44en_US
dc.identifier.wosWOS:000476964900015
dc.identifier.wosqualityQ1
dc.institutionauthorDevrim, Yılser
dc.institutionauthorUzundurukan, Arife
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount52
dc.subjectHydrogen generationen_US
dc.subjectSodium borohydrideen_US
dc.subjectHydrolysisen_US
dc.subjectCatalysten_US
dc.subjectPt/MWCNTen_US
dc.titleHydrogen Generation From Sodium Borohydride Hydrolysis by Multi-Walled Carbon Nanotube Supported Platinum Catalyst: a Kinetic Studyen_US
dc.typeArticleen_US
dc.wos.citedbyCount47
dspace.entity.typePublication
relation.isAuthorOfPublicationd9a1d14f-b12f-40ca-a17d-175c6f9c882a
relation.isAuthorOfPublicationd49e1fbd-1e3d-4a65-ad42-0fa792bec8c5
relation.isAuthorOfPublication.latestForDiscoveryd9a1d14f-b12f-40ca-a17d-175c6f9c882a
relation.isOrgUnitOfPublication80f84cab-4b75-401b-b4b1-f2ec308f3067
relation.isOrgUnitOfPublication.latestForDiscovery80f84cab-4b75-401b-b4b1-f2ec308f3067

Files

Collections