Performance Analysis of Modular Rf Front End for Rf Fingerprinting of Bluetooth Devices

dc.contributor.author Uzundurukan, Emre
dc.contributor.author Ali, Aysha M.
dc.contributor.author Dalveren, Yaser
dc.contributor.author Kara, Ali
dc.contributor.other Department of Electrical & Electronics Engineering
dc.contributor.other Airframe and Powerplant Maintenance
dc.contributor.other 15. Graduate School of Natural and Applied Sciences
dc.contributor.other 13. School of Civil Aviation (4-Year)
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:38:09Z
dc.date.available 2024-07-05T15:38:09Z
dc.date.issued 2020
dc.description Kara, Ali/0000-0002-9739-7619; Dalveren, Yaser/0000-0002-9459-0042; UZUNDURUKAN, Emre/0000-0003-4868-9639 en_US
dc.description.abstract Radio frequency fingerprinting (RFF) could provide an efficient solution to address the security issues in wireless networks. The data acquisition system constitutes an important part of RFF. In this context, this paper presents an implementation of a modular RF front end system to be used in data acquisition for RFF. Modularity of the system provides flexible implementation options to suit diverse frequency bands with different applications. Moreover, the system is able to collect data by means of any digitizer, and enable to record the data at lower frequencies. Therefore, proposed RF front end system becomes a low-cost alternative to existing devices used in data acquisition. In its implementation, Bluetooth (BT) signals were used. Initially, transients of BT signals were detected by utilizing a large number of BT devices (smartphones). From the detected transients, distinctive signal features were extracted. Then, support vector machine (SVM) and neural networks (NN) classifiers were implemented to the extracted features for evaluating the feasibility of proposed system in RFF. As a result, 96.9% and 96.5% classification accuracies on BT devices have been demonstrated for SVM and NN classifiers respectively. en_US
dc.identifier.doi 10.1007/s11277-020-07162-z
dc.identifier.issn 0929-6212
dc.identifier.issn 1572-834X
dc.identifier.scopus 2-s2.0-85078210176
dc.identifier.uri https://doi.org/10.1007/s11277-020-07162-z
dc.identifier.uri https://hdl.handle.net/20.500.14411/3052
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Radio frequency fingerprinting en_US
dc.subject Bluetooth en_US
dc.subject Data acquisition en_US
dc.subject RF front end en_US
dc.subject Support vector machine en_US
dc.subject Neural networks en_US
dc.title Performance Analysis of Modular Rf Front End for Rf Fingerprinting of Bluetooth Devices en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kara, Ali/0000-0002-9739-7619
gdc.author.id Dalveren, Yaser/0000-0002-9459-0042
gdc.author.id UZUNDURUKAN, Emre/0000-0003-4868-9639
gdc.author.institutional Uzundurukan, Emre
gdc.author.institutional Dalveren, Yaser
gdc.author.institutional Kara, Ali
gdc.author.scopusid 57195223293
gdc.author.scopusid 57195218811
gdc.author.scopusid 51763497600
gdc.author.scopusid 7102824862
gdc.author.wosid Kara, Ali/R-8038-2019
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Uzundurukan, Emre; Dalveren, Yaser] Atilim Univ, Dept Avion, TR-06830 Ankara, Turkey; [Ali, Aysha M.] Omer Al Mukhtar Univ, Dept Elect & Elect Engn, Al Bayda, Libya; [Dalveren, Yaser] Norwegian Univ Sci & Technol, Fac Informat Technol & Elect Engn, Dept Elect Syst, Gjovik, Norway; [Kara, Ali] Atilim Univ, Elect & Elect Engn Dept, TR-06830 Ankara, Turkey en_US
gdc.description.endpage 2531 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 2519 en_US
gdc.description.volume 112 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W3001866191
gdc.identifier.wos WOS:000540219800023
gdc.openalex.fwci 1.417
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 13
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 14
gdc.plumx.scopuscites 19
gdc.scopus.citedcount 19
gdc.wos.citedcount 16
relation.isAuthorOfPublication ca5682e6-fb77-4061-be5b-cd2e743e23d2
relation.isAuthorOfPublication 55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isAuthorOfPublication be728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication.latestForDiscovery ca5682e6-fb77-4061-be5b-cd2e743e23d2
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication 0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication e28bb977-cadc-4429-b547-973b099c3ce8
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery c3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections