Comparison of conventional deep drawing, hydromechanical deep-drawing and high pressure sheet metal forming by numerical experiments

No Thumbnail Available

Date

2005

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics Inc.

Research Projects

Organizational Units

Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

Increasing use of new technologies in automotive and aircraft applications requires intensive research and developments on sheet metal forming processes. This study focuses on the assessment of sheet hydroforming, hydro-mechanical deep drawing and conventional deep-drawing processes by performing a systematic analysis by numerical simulations. Circular, elliptic, rectangular and square cross-section cups have been selected for the geometry spectrum. Within the range of each cross section, depth, drawing ratio and fillet radii have been altered systematically. St14 stainless steel has been used as the material throughout the study. The deformation behavior has been described by an elasto-plastic material model and all numerical simulations have been carried out by using a dynamic-explicit commercial finite element code. During the analyses each workpiece is produced by the three competing processes. The analyses results such as sheet thickness distribution, necking, forming of radii etc., are used for assessing the success of each forming process alternative. The analyses revealed that depending on the workpiece geometry and dimensional properties certain processes are preferable for obtaining satisfactory products. The process windows for each process have been established based on the analyzed parameters of the three different product geometries. This data is expected to be useful for selecting the appropriate production process for a given workpiece geometry. © 2005 American Institute of Physics.

Description

American Iron and Steel Institute; Daimler Chrysler Corporation; Ford Motor Corporation; General Motors Corporation

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Citation

3

WoS Q

Scopus Q

Q4

Source

AIP Conference Proceedings -- NUMISHEET 2005: 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes -- 15 August 2005 through 19 August 2005 -- Detroit, MI

Volume

778 A

Issue

Start Page

563

End Page

568

Collections