A Combined Experimental and Numerical Thermo-Hydrodynamic Investigation of High-Temperature Fluidized-Bed Thermal Energy Storage

dc.authoridMEHRTASH, MEHDI/0000-0001-8543-7006
dc.authoridTARI, ILKER/0000-0002-4048-1254
dc.authorscopusid57203048408
dc.authorscopusid57736086900
dc.authorscopusid35204094300
dc.authorwosidMehrtash, Mehdi/HJH-1904-2023
dc.contributor.authorMehrtash, Mehdi
dc.contributor.authorKaradiken, Esra Polat
dc.contributor.authorTari, Ilker
dc.contributor.otherEnergy Systems Engineering
dc.date.accessioned2024-07-05T15:17:39Z
dc.date.available2024-07-05T15:17:39Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Mehrtash, Mehdi] Atilim Univ, Energy Syst Engn, TR-06830 Ankara, Turkey; [Karadiken, Esra Polat; Tari, Ilker] Middle East Tech Univ, Mech Engn Dept, TR-06800 Ankara, Turkey; [Tari, Ilker] ODTU GUNAM Ctr Solar Energy Res & Applicat, TR-06800 Ankara, Turkeyen_US
dc.descriptionMEHRTASH, MEHDI/0000-0001-8543-7006; TARI, ILKER/0000-0002-4048-1254en_US
dc.description.abstractThe present research describes the design, analysis, and modeling of an air-granular particle fluidized-bed system with dimensions of 0.08 m x 0.4 m x 0.08 m. The hydrodynamic and thermal experiments are designed to verify the numerical model previously created for this purpose. The gas-solid two-phase flow is described using a three-dimensional, two-fluid model based on the Eulerian-Eulerian method. The experiment is conducted, and the numerical model is updated for the new geometry while maintaining the solution parameters. Silica sand and sintered bauxite particles are employed in both experimental and numerical investigations to examine the behaviors of these particles. The hydrodynamic validity of the numerical model is established by the use of experimental findings for pressure drop and bed expansion ratio. The thermal tests are conducted with 585 K hot sand, and the temperature distribution in the bed is measured using K-type thermocouples and compared with the simulation data. Both the hydrodynamical and thermal experimental data appear to agree with the conclusions of the computational analyses. The validated model is then used to mimic the performance of the bed at elevated temperatures. The performance indicators are discussed and calculated for 973 K, demonstrating that as the temperature rises, the system efficiency increases.en_US
dc.description.sponsorshipEuropean Union [823802]en_US
dc.description.sponsorshipThis work was supported in part with funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 823802 and by in-kind contributions from Middle East Technical University.en_US
dc.identifier.citation2
dc.identifier.doi10.3390/pr10061097
dc.identifier.issn2227-9717
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85131723537
dc.identifier.urihttps://doi.org/10.3390/pr10061097
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1758
dc.identifier.volume10en_US
dc.identifier.wosWOS:000816516000001
dc.identifier.wosqualityQ2
dc.institutionauthorMehrtash, Mehdi
dc.institutionauthorMehrtash, Mehdı
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectthermal energy storageen_US
dc.subjectbubbling FBen_US
dc.subjectmultiphase flowen_US
dc.subjectexperimental analysesen_US
dc.subjecttwo-fluid modelen_US
dc.titleA Combined Experimental and Numerical Thermo-Hydrodynamic Investigation of High-Temperature Fluidized-Bed Thermal Energy Storageen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationd7ddf959-822b-4aab-a10b-05a6d4b51830
relation.isAuthorOfPublicationd3b46cfc-3752-4544-bec6-3c11195cc422
relation.isAuthorOfPublication.latestForDiscoveryd7ddf959-822b-4aab-a10b-05a6d4b51830
relation.isOrgUnitOfPublication80f84cab-4b75-401b-b4b1-f2ec308f3067
relation.isOrgUnitOfPublication.latestForDiscovery80f84cab-4b75-401b-b4b1-f2ec308f3067

Files

Collections