Spectrum of the <i>q</I>-schrodinger Equation by Means of the Variational Method Based on the Discrete <i>q</I>-hermite I Polynomials
dc.authorscopusid | 35782583700 | |
dc.authorscopusid | 49864511100 | |
dc.authorscopusid | 57221918059 | |
dc.authorwosid | Doğan Çalışır, Ayşe/IWM-1563-2023 | |
dc.authorwosid | Sevinik-Adiguzel, Rezan/KMA-1274-2024 | |
dc.authorwosid | Turan, Mehmet/JYQ-4459-2024 | |
dc.contributor.author | Turan, Mehmet | |
dc.contributor.author | Adiguzel, Rezan Sevinik | |
dc.contributor.author | Calisir, Ayse Dogan | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:18:44Z | |
dc.date.available | 2024-07-05T15:18:44Z | |
dc.date.issued | 2021 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Turan, Mehmet; Adiguzel, Rezan Sevinik] Atilim Univ, Dept Math, TR-06830 Ankara, Turkey; [Calisir, Ayse Dogan] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Calisir, Ayse Dogan] Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey | en_US |
dc.description.abstract | In this work, the q-Schrodinger equations with symmetric polynomial potentials are considered. The spectrum of the model is obtained for several values of q, and the limiting case as q -> 1 is considered. The Rayleigh-Ritz variational method is adopted to the system. The discrete q-Hermite I polynomials are handled as basis in this method. Furthermore, the following potentials with numerous results are presented as applications: q-harmonic, purely q-quartic and q-quartic oscillators. It is also shown that the obtained results confirm the ones that exist in the literature for the continuous case. | en_US |
dc.identifier.citationcount | 2 | |
dc.identifier.doi | 10.1142/S0217751X21500202 | |
dc.identifier.issn | 0217-751X | |
dc.identifier.issn | 1793-656X | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85100597979 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.uri | https://doi.org/10.1142/S0217751X21500202 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1898 | |
dc.identifier.volume | 36 | en_US |
dc.identifier.wos | WOS:000617495600003 | |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Turan, Mehmet | |
dc.institutionauthor | Sevinik Adıgüzel, Rezan | |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 1 | |
dc.subject | Discrete Schrodinger equation | en_US |
dc.subject | q-harmonic oscillator | en_US |
dc.subject | Rayleigh-Ritz variational method | en_US |
dc.subject | discrete q-Hermite I polynomials | en_US |
dc.title | Spectrum of the <i>q</I>-schrodinger Equation by Means of the Variational Method Based on the Discrete <i>q</I>-hermite I Polynomials | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 2 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5010d3f8-f1f2-4750-b086-e5b5edacaef7 | |
relation.isAuthorOfPublication | a13db494-31aa-41e0-b214-4e23a78dc41b | |
relation.isAuthorOfPublication.latestForDiscovery | 5010d3f8-f1f2-4750-b086-e5b5edacaef7 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |