Hydrogen energy systems for underwater applications

dc.authoridDEVRIM, YILSER/0000-0001-8430-0702
dc.authoridEroglu, Inci/0000-0002-6635-3947
dc.authoridOzturk, Tayfur/0000-0001-5780-1966
dc.authorscopusid57188657951
dc.authorscopusid11139445500
dc.authorscopusid7004084345
dc.authorscopusid7004598043
dc.authorwosidDEVRIM, YILSER/AAF-8790-2019
dc.contributor.authorSezgin, Berna
dc.contributor.authorDevrim, Yilser
dc.contributor.authorOzturk, Tayfur
dc.contributor.authorEroglu, Inci
dc.contributor.otherEnergy Systems Engineering
dc.date.accessioned2024-07-05T15:17:39Z
dc.date.available2024-07-05T15:17:39Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Sezgin, Berna; Ozturk, Tayfur] Middle East Tech Univ, Dept Met & Mat Engn, TR-06800 Ankara, Turkey; [Sezgin, Berna] ROKETSAN Missiles Inc, TR-06790 Ankara, Turkey; [Devrim, Yilser] Atilim Univ, Dept Energy Syst Engn, TR-06830 Ankara, Turkey; [Eroglu, Inci] Middle East Tech Univ, Dept Chem Engn, TR-06800 Ankara, Turkeyen_US
dc.descriptionDEVRIM, YILSER/0000-0001-8430-0702; Eroglu, Inci/0000-0002-6635-3947; Ozturk, Tayfur/0000-0001-5780-1966en_US
dc.description.abstractThe most critical development in conventional underwater applications in recent years is to use hydrogen energy systems, including Air Independent Propulsion (AIP) systems. Proton Exchange Membrane (PEM) fuel cell-powered AIP systems increase interest worldwide. They offer many advantages such as longer endurance time without going to the surface for 2-3 weeks or without snorkeling with an average speed, perfectly silent operation, environmentally friendly process, high efficiency, and low thermal dissipation underwater. PEM fuel cells require a continuous source of hydrogen and oxygen as reactants to sustain a chemical reaction to produce electrical energy. Hydrogen storage is the critical challenge regarding the quality of supplied hydrogen, system weight, and volume. This paper reviewed hydrogen/oxygen storage preferences coupled with PEM Fuel Cell applications in the literature for unmanned underwater vehicles. Since underwater vehicles have different volume and weight requirements, no single hydrogen storage technique is the best for all underwater applications.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.en_US
dc.identifier.citationcount21
dc.identifier.doi10.1016/j.ijhydene.2022.01.192
dc.identifier.endpage19796en_US
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.issue45en_US
dc.identifier.scopus2-s2.0-85125116586
dc.identifier.startpage19780en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2022.01.192
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1751
dc.identifier.volume47en_US
dc.identifier.wosWOS:000810181600001
dc.identifier.wosqualityQ1
dc.institutionauthorDevrim, Yılser
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount34
dc.subjectSubmarineen_US
dc.subjectUnmanned underwater vehicleen_US
dc.subjectHydrogen storageen_US
dc.subjectReformeren_US
dc.subjectPEM Fuel cellsen_US
dc.titleHydrogen energy systems for underwater applicationsen_US
dc.typeArticleen_US
dc.wos.citedbyCount31
dspace.entity.typePublication
relation.isAuthorOfPublicationd9a1d14f-b12f-40ca-a17d-175c6f9c882a
relation.isAuthorOfPublication.latestForDiscoveryd9a1d14f-b12f-40ca-a17d-175c6f9c882a
relation.isOrgUnitOfPublication80f84cab-4b75-401b-b4b1-f2ec308f3067
relation.isOrgUnitOfPublication.latestForDiscovery80f84cab-4b75-401b-b4b1-f2ec308f3067

Files

Collections