Growth and Temperature-Tuned Band Gap Characteristics of Ligd(moo4)2 Single Crystals for Optoelectronic Applications
No Thumbnail Available
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Sci Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
LiGd(MoO4)2 has been investigated due to its optoelectronic applications, especially for development of lightemitting diodes. In the present paper, LiGd(MoO4)2 single crystals grown by Czochralski method was studied in terms of structural and temperature dependent optical properties. X-ray diffraction analysis showed that the crystal crystallizes in a single phase tetragonal structure. Raman spectrum exhibited six distinguishable peaks around 207, 319, 397, 706, 756 and 890 cm-1. These peaks correspond to vibrational modes of free rotation, symmetrical stretching, symmetric bending, antisymmetric stretching and antisymmetric bending of (MoO4)2tetrahedron. Infrared transmittance spectrum had eight minima around 2114, 2350, 2451, 2854, 2929, 2960, 3545 and 3578 cm-1 which are due to multiphonon absorptions. Spectral change of transmittance curves at various temperature between 10 and 300 K was utilized to elucidate temperature effect on absorption characteristics. Optical band gap of the material was found using Tauc and spectral derivative methods. The band gap value was obtained as 3.09 eV at room temperature and this value increased to 3.22 eV with decreasing temperature down to 10 K. The detailed analysis on the temperature dependency of the band gap was applied by Varshni model. The band gap at 0 K and change of rate of the band gap were estimated as 3.23 eV and -1.45 x 10-3 eV/K, respectively. Room temperature photoluminescence spectrum of the crystal presented a peak around 709 nm which corresponds to red light emission. LiGd(MoO4)2 is a potential candidate for optoelectronic devices emitting red light.
Description
Gasanly, Nizami/0000-0002-3199-6686; Delice, Serdar/0000-0001-5409-6528; Isik, Mehmet/0000-0003-2119-8266
Keywords
Scheelites, Double molybdates, Optical properties, LEDs, Optoelectronic devices
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q1
Scopus Q
Source
Volume
49
Issue
15
Start Page
25840
End Page
25847