Growth and temperature-tuned band gap characteristics of LiGd(MoO4)2 single crystals for optoelectronic applications

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

LiGd(MoO4)2 has been investigated due to its optoelectronic applications, especially for development of lightemitting diodes. In the present paper, LiGd(MoO4)2 single crystals grown by Czochralski method was studied in terms of structural and temperature dependent optical properties. X-ray diffraction analysis showed that the crystal crystallizes in a single phase tetragonal structure. Raman spectrum exhibited six distinguishable peaks around 207, 319, 397, 706, 756 and 890 cm-1. These peaks correspond to vibrational modes of free rotation, symmetrical stretching, symmetric bending, antisymmetric stretching and antisymmetric bending of (MoO4)2tetrahedron. Infrared transmittance spectrum had eight minima around 2114, 2350, 2451, 2854, 2929, 2960, 3545 and 3578 cm-1 which are due to multiphonon absorptions. Spectral change of transmittance curves at various temperature between 10 and 300 K was utilized to elucidate temperature effect on absorption characteristics. Optical band gap of the material was found using Tauc and spectral derivative methods. The band gap value was obtained as 3.09 eV at room temperature and this value increased to 3.22 eV with decreasing temperature down to 10 K. The detailed analysis on the temperature dependency of the band gap was applied by Varshni model. The band gap at 0 K and change of rate of the band gap were estimated as 3.23 eV and -1.45 x 10-3 eV/K, respectively. Room temperature photoluminescence spectrum of the crystal presented a peak around 709 nm which corresponds to red light emission. LiGd(MoO4)2 is a potential candidate for optoelectronic devices emitting red light.

Description

Gasanly, Nizami/0000-0002-3199-6686; Delice, Serdar/0000-0001-5409-6528; Isik, Mehmet/0000-0003-2119-8266

Keywords

Scheelites, Double molybdates, Optical properties, LEDs, Optoelectronic devices

Turkish CoHE Thesis Center URL

Citation

1

WoS Q

Q1

Scopus Q

Source

Volume

49

Issue

15

Start Page

25840

End Page

25847

Collections