On the Dynamics of the Nonlinear Difference Equation <i>xn</I>+1 = Α Plus Β<i>xn</I>-1 + <i>xn</I>-1

dc.authoridTuran, Mehmet/0000-0002-1718-3902
dc.authorscopusid57008791900
dc.authorscopusid35782583700
dc.authorwosidTuran, Mehmet/JYQ-4459-2024
dc.contributor.authorAksoy, Aycan
dc.contributor.authorTuran, Mehmet
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T14:32:18Z
dc.date.available2024-07-05T14:32:18Z
dc.date.issued2015
dc.departmentAtılım Universityen_US
dc.department-temp[Aksoy, Aycan; Turan, Mehmet] Atilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.descriptionTuran, Mehmet/0000-0002-1718-3902en_US
dc.description.abstractThe boundedness and semi-cycle analysis of positive solutions, existence of period-2 solutions, and local and global asymptotic stability of the recursive sequence x(n+1) = alpha + beta x(n-1) + x(n-1)/x(n), n = 0,1,... are investigated where alpha is an element of [0, infinity), beta is an element of [0, 1) and the initial conditions x(-1) and x(0) are arbitrary positive real numbers. The paper concludes with some numerical examples to illustrate the theoretical results.en_US
dc.identifier.citationcount1
dc.identifier.doi10.2306/scienceasia1513-1874.2015.41.350
dc.identifier.endpage356en_US
dc.identifier.issn1513-1874
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-84950323949
dc.identifier.scopusqualityQ2
dc.identifier.startpage350en_US
dc.identifier.urihttps://doi.org/10.2306/scienceasia1513-1874.2015.41.350
dc.identifier.urihttps://hdl.handle.net/20.500.14411/789
dc.identifier.volume41en_US
dc.identifier.wosWOS:000367281700009
dc.identifier.wosqualityQ3
dc.institutionauthorTuran, Mehmet
dc.language.isoenen_US
dc.publisherScience Society Thailanden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.scopus.citedbyCount2
dc.subjectrecursion relationen_US
dc.subjectstabilityen_US
dc.subjectboundednessen_US
dc.titleOn the Dynamics of the Nonlinear Difference Equation <i>xn</I>+1 = Α Plus Β<i>xn</I>-1 + <i>xn</I>-1en_US
dc.typeArticleen_US
dc.wos.citedbyCount1
dspace.entity.typePublication
relation.isAuthorOfPublication5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isAuthorOfPublication.latestForDiscovery5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections