Variations on a Theme of Mirsky
dc.authorid | AKBAL, YILDIRIM/0000-0003-2138-4050 | |
dc.authorscopusid | 56543736000 | |
dc.authorscopusid | 25632498400 | |
dc.authorwosid | Akbal, Yıldırım/ITT-5282-2023 | |
dc.contributor.author | Akbal,Y. | |
dc.contributor.author | Güloǧlu,A.M. | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:21:37Z | |
dc.date.available | 2024-07-05T15:21:37Z | |
dc.date.issued | 2023 | |
dc.department | Atılım University | en_US |
dc.department-temp | Akbal Y., Department of Mathematics, Atlllm University, Gölbaşl, Ankara, 06830, Turkey; Güloǧlu A.M., Department of Mathematics, Bilkent University, SA 131, Bilkent, Ankara, 06800, Turkey | en_US |
dc.description | AKBAL, YILDIRIM/0000-0003-2138-4050 | en_US |
dc.description.abstract | Let k and r be non-zero integers with r ≥ 2. An integer is called r-free if it is not divisible by the rth power of a prime. A result of Mirsky states that there are infinitely many primes p such that p + k is r-free. In this paper, we study an additive Goldbach-type problem and prove two uniform distribution results using these primes. We also study certain properties of primes p such that p + a1,...,p + aℓ are simultaneously r-free, where a1,...,aℓ are non-zero integers and ℓ ≥ 1. © 2023 World Scientific Publishing Company. | en_US |
dc.description.sponsorship | TUBITAK Research Grant [119F425] | en_US |
dc.description.sponsorship | We thank the referees for carefully reading the paper and their helpful suggestions that we believe improved the organization of this paper. Both authors are supported by TUBITAK Research Grant No. 119F425. | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1142/S179304212350001X | |
dc.identifier.endpage | 39 | en_US |
dc.identifier.issn | 1793-0421 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85133913564 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://doi.org/10.1142/S179304212350001X | |
dc.identifier.volume | 19 | en_US |
dc.identifier.wos | WOS:000849372900001 | |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Akbal, Yıldırım | |
dc.institutionauthor | Akbal, Yıldırım | |
dc.language.iso | en | en_US |
dc.publisher | World Scientific | en_US |
dc.relation.ispartof | International Journal of Number Theory | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Goldbach-type additive problems | en_US |
dc.subject | Hardy-Littlewood circle method | en_US |
dc.subject | r -free shifted primes | en_US |
dc.title | Variations on a Theme of Mirsky | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | faa13d54-b0d3-43ec-934f-aca296a83e3e | |
relation.isAuthorOfPublication.latestForDiscovery | faa13d54-b0d3-43ec-934f-aca296a83e3e | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |