Variations on a Theme of Mirsky

dc.authoridAKBAL, YILDIRIM/0000-0003-2138-4050
dc.authorscopusid56543736000
dc.authorscopusid25632498400
dc.authorwosidAkbal, Yıldırım/ITT-5282-2023
dc.contributor.authorAkbal,Y.
dc.contributor.authorGüloǧlu,A.M.
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:21:37Z
dc.date.available2024-07-05T15:21:37Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-tempAkbal Y., Department of Mathematics, Atlllm University, Gölbaşl, Ankara, 06830, Turkey; Güloǧlu A.M., Department of Mathematics, Bilkent University, SA 131, Bilkent, Ankara, 06800, Turkeyen_US
dc.descriptionAKBAL, YILDIRIM/0000-0003-2138-4050en_US
dc.description.abstractLet k and r be non-zero integers with r ≥ 2. An integer is called r-free if it is not divisible by the rth power of a prime. A result of Mirsky states that there are infinitely many primes p such that p + k is r-free. In this paper, we study an additive Goldbach-type problem and prove two uniform distribution results using these primes. We also study certain properties of primes p such that p + a1,...,p + aℓ are simultaneously r-free, where a1,...,aℓ are non-zero integers and ℓ ≥ 1. © 2023 World Scientific Publishing Company.en_US
dc.description.sponsorshipTUBITAK Research Grant [119F425]en_US
dc.description.sponsorshipWe thank the referees for carefully reading the paper and their helpful suggestions that we believe improved the organization of this paper. Both authors are supported by TUBITAK Research Grant No. 119F425.en_US
dc.identifier.citation0
dc.identifier.doi10.1142/S179304212350001X
dc.identifier.endpage39en_US
dc.identifier.issn1793-0421
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85133913564
dc.identifier.scopusqualityQ3
dc.identifier.startpage1en_US
dc.identifier.urihttps://doi.org/10.1142/S179304212350001X
dc.identifier.volume19en_US
dc.identifier.wosWOS:000849372900001
dc.identifier.wosqualityQ3
dc.institutionauthorAkbal, Yıldırım
dc.institutionauthorAkbal, Yıldırım
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.relation.ispartofInternational Journal of Number Theoryen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGoldbach-type additive problemsen_US
dc.subjectHardy-Littlewood circle methoden_US
dc.subjectr -free shifted primesen_US
dc.titleVariations on a Theme of Mirskyen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationfaa13d54-b0d3-43ec-934f-aca296a83e3e
relation.isAuthorOfPublication.latestForDiscoveryfaa13d54-b0d3-43ec-934f-aca296a83e3e
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections