Autonomous Tuning for Constraint Programming Via Artificial Bee Colony Optimization

dc.authoridjohnson, franklin/0000-0003-4522-3809
dc.authoridMisra, Sanjay/0000-0002-3556-9331
dc.authoridCrawford, Broderick/0000-0001-5500-0188
dc.authoridGalleguillos, Cristian/0000-0001-9460-8719
dc.authorscopusid24403038600
dc.authorscopusid23395875300
dc.authorscopusid56971288300
dc.authorscopusid57198032485
dc.authorscopusid55761197000
dc.authorscopusid56962766700
dc.authorscopusid15520434500
dc.authorwosidjohnson, franklin/AAQ-1436-2020
dc.authorwosidMisra, Sanjay/K-2203-2014
dc.authorwosidGalleguillos, Cristian/C-7756-2014
dc.contributor.authorSoto, Ricardo
dc.contributor.authorMısra, Sanjay
dc.contributor.authorCrawford, Broderick
dc.contributor.authorMella, Felipe
dc.contributor.authorFlores, Javier
dc.contributor.authorGalleguillos, Cristian
dc.contributor.authorMisra, Sanjay
dc.contributor.authorParedes, Fernando
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T14:32:11Z
dc.date.available2024-07-05T14:32:11Z
dc.date.issued2015
dc.departmentAtılım Universityen_US
dc.department-temp[Soto, Ricardo; Crawford, Broderick; Mella, Felipe; Flores, Javier; Galleguillos, Cristian] Pontificia Univ Catolica Valparaiso, Valparaiso, Chile; [Soto, Ricardo] Univ Autonoma Chile, Santiago, Chile; [Soto, Ricardo] Univ Cient Sur, Lima, Peru; [Crawford, Broderick] Univ San Sebastian, Santiago, Chile; [Crawford, Broderick] Univ Cent Chile, Santiago, Chile; [Misra, Sanjay] Atilim Univ, Ankara, Turkey; [Johnson, Franklin] Univ Playa Ancha, Valparaiso, Chile; [Paredes, Fernando] Univ Diego Portales, Escuela Ingn Ind, Santiago, Chileen_US
dc.descriptionjohnson, franklin/0000-0003-4522-3809; Misra, Sanjay/0000-0002-3556-9331; Crawford, Broderick/0000-0001-5500-0188; Galleguillos, Cristian/0000-0001-9460-8719en_US
dc.description.abstractConstraint Programming allows the resolution of complex problems, mainly combinatorial ones. These problems are defined by a set of variables that are subject to a domain of possible values and a set of constraints. The resolution of these problems is carried out by a constraint satisfaction solver which explores a search tree of potential solutions. This exploration is controlled by the enumeration strategy, which is responsible for choosing the order in which variables and values are selected to generate the potential solution. Autonomous Search provides the ability to the solver to self-tune its enumeration strategy in order to select the most appropriate one for each part of the search tree. This self-tuning process is commonly supported by an optimizer which attempts to maximize the quality of the search process, that is, to accelerate the resolution. In this work, we present a new optimizer for self-tuning in constraint programming based on artificial bee colonies. We report encouraging results where our autonomous tuning approach clearly improves the performance of the resolution process.en_US
dc.identifier.citation2
dc.identifier.doi10.1007/978-3-319-21404-7_12
dc.identifier.endpage171en_US
dc.identifier.isbn9783319214047
dc.identifier.isbn9783319214030
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-84948979394
dc.identifier.startpage159en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-319-21404-7_12
dc.identifier.urihttps://hdl.handle.net/20.500.14411/751
dc.identifier.volume9155en_US
dc.identifier.wosWOS:000364988700012
dc.language.isoenen_US
dc.publisherSpringer-verlag Berlinen_US
dc.relation.ispartof15th International Conference on Computational Science and Its Applications (ICCSA) -- JUN 22-25, 2015 -- Banff, CANADAen_US
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectOptimizationen_US
dc.subjectAdaptive systemsen_US
dc.subjectMetaheuristicsen_US
dc.titleAutonomous Tuning for Constraint Programming Via Artificial Bee Colony Optimizationen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections