Reliability Assessment of System Under a Generalized Cumulative Shock Model

dc.authoridXie, Min/0000-0002-8500-8364
dc.authoridGong, Min/0000-0002-8818-8604
dc.authoridEryilmaz, Serkan/0000-0002-2108-1781
dc.authorscopusid57193992595
dc.authorscopusid8203625300
dc.authorscopusid9634359100
dc.authorwosidXie, Min/IUQ-1412-2023
dc.authorwosidXie, Min/A-5552-2011
dc.authorwosidEryilmaz, Serkan/AAF-9349-2019
dc.contributor.authorGong, Min
dc.contributor.authorEryilmaz, Serkan
dc.contributor.authorXie, Min
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-07-05T15:39:59Z
dc.date.available2024-07-05T15:39:59Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-temp[Gong, Min] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Anhui, Peoples R China; [Gong, Min; Xie, Min] City Univ Hong Kong, Dept Syst Engn & Engn Management, Kowloon, Hong Kong, Peoples R China; [Eryilmaz, Serkan] Atilim Univ, Dept Ind Engn, Ankara, Turkeyen_US
dc.descriptionXie, Min/0000-0002-8500-8364; Gong, Min/0000-0002-8818-8604; Eryilmaz, Serkan/0000-0002-2108-1781en_US
dc.description.abstractReliability assessment of system suffering from random shocks is attracting a great deal of attention in recent years. Excluding internal factors such as aging and wear-out, external shocks which lead to sudden changes in the system operation environment are also important causes of system failure. Therefore, efficiently modeling the reliability of such system is an important applied problem. A variety of shock models are developed to model the inter-arrival time between shocks and magnitude of shocks. In a cumulative shock model, the system fails when the cumulative magnitude of damage caused by shocks exceed a threshold. Nevertheless, in the existing literatures, only the magnitude is taken into consideration, while the source of shocks is usually neglected. Using the same distribution to model the magnitude of shocks from different sources is too critical in real practice. To this end, considering a system subject to random shocks from various sources with different probabilities, we develop a generalized cumulative shock model in this article. We use phase-type distribution to model the variables, which is highly versatile to be used for modeling quantitative features of random phenomenon. We will discuss the reliability characteristics of such system in some detail and give some clear expressions under the one-dimensional case. Numerical example for illustration is also provided along with a summary.en_US
dc.identifier.citationcount39
dc.identifier.doi10.1177/1748006X19864831
dc.identifier.endpage137en_US
dc.identifier.issn1748-006X
dc.identifier.issn1748-0078
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85070403172
dc.identifier.scopusqualityQ2
dc.identifier.startpage129en_US
dc.identifier.urihttps://doi.org/10.1177/1748006X19864831
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3280
dc.identifier.volume234en_US
dc.identifier.wosWOS:000479814000001
dc.identifier.wosqualityQ3
dc.institutionauthorEryılmaz, Serkan
dc.language.isoenen_US
dc.publisherSage Publications Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.scopus.citedbyCount40
dc.subjectCumulative shock modelen_US
dc.subjectphase-type distributionen_US
dc.subjectreliability functionen_US
dc.subjectinter-arrival timeen_US
dc.subjectexponential distributionen_US
dc.subjectmean time to failureen_US
dc.titleReliability Assessment of System Under a Generalized Cumulative Shock Modelen_US
dc.typeArticleen_US
dc.wos.citedbyCount40
dspace.entity.typePublication
relation.isAuthorOfPublication37862217-5541-47e3-9406-e21aa38e7fdf
relation.isAuthorOfPublication.latestForDiscovery37862217-5541-47e3-9406-e21aa38e7fdf
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections