The Taylor Series Method of Order <i>p</I> and Adams-Bashforth Method on Time Scales

dc.contributor.author Georgiev, Svetlin G.
dc.contributor.author Erhan, Inci M.
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:24:51Z
dc.date.available 2024-07-05T15:24:51Z
dc.date.issued 2023
dc.description ERHAN, INCI M./0000-0001-6042-3695 en_US
dc.description.abstract A recent study on the Taylor series method of second order and the trapezoidal rule for dynamic equations on time scales has been continued by introducing a derivation of the Taylor series method of arbitrary order p$$ p $$ on time scales. The error and convergence analysis of the method is also obtained. The 2-step Adams-Bashforth method for dynamic equations on time scales is concluded and applied to examples of initial value problems for nonlinear dynamic equations. Numerical results are presented and discussed. en_US
dc.identifier.doi 10.1002/mma.8512
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.scopus 2-s2.0-85133609464
dc.identifier.uri https://doi.org/10.1002/mma.8512
dc.identifier.uri https://hdl.handle.net/20.500.14411/2448
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof Mathematical Methods in the Applied Sciences
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Adams-Bashforth method en_US
dc.subject delta derivative en_US
dc.subject dynamic equation en_US
dc.subject Taylor series method en_US
dc.subject time scale en_US
dc.title The Taylor Series Method of Order <i>p</I> and Adams-Bashforth Method on Time Scales en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id ERHAN, INCI M./0000-0001-6042-3695
gdc.author.institutional Erhan, İnci
gdc.author.scopusid 7005135454
gdc.author.scopusid 6507345917
gdc.author.wosid ERHAN, INCI M./HLH-1268-2023
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Georgiev, Svetlin G.] Sorbonne Univ, Paris, France; [Erhan, Inci M.] Atilim Univ, Dept Math, Ankara, Turkey en_US
gdc.description.endpage 320 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 304 en_US
gdc.description.volume 46 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4284991187
gdc.identifier.wos WOS:000822374900001
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.583162E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.684737E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 2
relation.isAuthorOfPublication 1e2d1aac-8f23-4c84-8d68-63f1080be5f0
relation.isAuthorOfPublication.latestForDiscovery 1e2d1aac-8f23-4c84-8d68-63f1080be5f0
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections