The Taylor Series Method of Order <i>p</I> and Adams-Bashforth Method on Time Scales
| dc.contributor.author | Georgiev, Svetlin G. | |
| dc.contributor.author | Erhan, Inci M. | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:24:51Z | |
| dc.date.available | 2024-07-05T15:24:51Z | |
| dc.date.issued | 2023 | |
| dc.description | ERHAN, INCI M./0000-0001-6042-3695 | en_US |
| dc.description.abstract | A recent study on the Taylor series method of second order and the trapezoidal rule for dynamic equations on time scales has been continued by introducing a derivation of the Taylor series method of arbitrary order p$$ p $$ on time scales. The error and convergence analysis of the method is also obtained. The 2-step Adams-Bashforth method for dynamic equations on time scales is concluded and applied to examples of initial value problems for nonlinear dynamic equations. Numerical results are presented and discussed. | en_US |
| dc.identifier.doi | 10.1002/mma.8512 | |
| dc.identifier.issn | 0170-4214 | |
| dc.identifier.issn | 1099-1476 | |
| dc.identifier.scopus | 2-s2.0-85133609464 | |
| dc.identifier.uri | https://doi.org/10.1002/mma.8512 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/2448 | |
| dc.language.iso | en | en_US |
| dc.publisher | Wiley | en_US |
| dc.relation.ispartof | Mathematical Methods in the Applied Sciences | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Adams-Bashforth method | en_US |
| dc.subject | delta derivative | en_US |
| dc.subject | dynamic equation | en_US |
| dc.subject | Taylor series method | en_US |
| dc.subject | time scale | en_US |
| dc.title | The Taylor Series Method of Order <i>p</I> and Adams-Bashforth Method on Time Scales | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | ERHAN, INCI M./0000-0001-6042-3695 | |
| gdc.author.institutional | Erhan, İnci | |
| gdc.author.scopusid | 7005135454 | |
| gdc.author.scopusid | 6507345917 | |
| gdc.author.wosid | ERHAN, INCI M./HLH-1268-2023 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Georgiev, Svetlin G.] Sorbonne Univ, Paris, France; [Erhan, Inci M.] Atilim Univ, Dept Math, Ankara, Turkey | en_US |
| gdc.description.endpage | 320 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 304 | en_US |
| gdc.description.volume | 46 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4284991187 | |
| gdc.identifier.wos | WOS:000822374900001 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.583162E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.684737E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.0 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| gdc.wos.citedcount | 2 | |
| relation.isAuthorOfPublication | 1e2d1aac-8f23-4c84-8d68-63f1080be5f0 | |
| relation.isAuthorOfPublication.latestForDiscovery | 1e2d1aac-8f23-4c84-8d68-63f1080be5f0 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |