The Taylor Series Method of Order <i>p</I> and Adams-Bashforth Method on Time Scales

dc.authoridERHAN, INCI M./0000-0001-6042-3695
dc.authorscopusid7005135454
dc.authorscopusid6507345917
dc.authorwosidERHAN, INCI M./HLH-1268-2023
dc.contributor.authorGeorgiev, Svetlin G.
dc.contributor.authorErhan, İnci
dc.contributor.authorErhan, Inci M.
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:24:51Z
dc.date.available2024-07-05T15:24:51Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-temp[Georgiev, Svetlin G.] Sorbonne Univ, Paris, France; [Erhan, Inci M.] Atilim Univ, Dept Math, Ankara, Turkeyen_US
dc.descriptionERHAN, INCI M./0000-0001-6042-3695en_US
dc.description.abstractA recent study on the Taylor series method of second order and the trapezoidal rule for dynamic equations on time scales has been continued by introducing a derivation of the Taylor series method of arbitrary order p$$ p $$ on time scales. The error and convergence analysis of the method is also obtained. The 2-step Adams-Bashforth method for dynamic equations on time scales is concluded and applied to examples of initial value problems for nonlinear dynamic equations. Numerical results are presented and discussed.en_US
dc.identifier.citation1
dc.identifier.doi10.1002/mma.8512
dc.identifier.endpage320en_US
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85133609464
dc.identifier.startpage304en_US
dc.identifier.urihttps://doi.org/10.1002/mma.8512
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2448
dc.identifier.volume46en_US
dc.identifier.wosWOS:000822374900001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdams-Bashforth methoden_US
dc.subjectdelta derivativeen_US
dc.subjectdynamic equationen_US
dc.subjectTaylor series methoden_US
dc.subjecttime scaleen_US
dc.titleThe Taylor Series Method of Order <i>p</I> and Adams-Bashforth Method on Time Scalesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication1e2d1aac-8f23-4c84-8d68-63f1080be5f0
relation.isAuthorOfPublication.latestForDiscovery1e2d1aac-8f23-4c84-8d68-63f1080be5f0
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections