Estimation of the Mean Radiant Temperature in Office Buildings Using an Artificial Neural Network Developed in a Phyton Environment

dc.authorscopusid57219871456
dc.authorscopusid55346613600
dc.authorscopusid56011415300
dc.authorwosidTurhan, Cihan/Abd-1880-2021
dc.authorwosidÖzbey, Mehmet Furkan/Glu-8252-2022
dc.contributor.authorOzbey, Mehmet Furkan
dc.contributor.authorLotfi, Bahram
dc.contributor.authorTurhan, Cihan
dc.date.accessioned2025-03-05T20:47:04Z
dc.date.available2025-03-05T20:47:04Z
dc.date.issued2025
dc.departmentAtılım Universityen_US
dc.department-temp[Ozbey, Mehmet Furkan] Atilim Univ, Grad Sch Nat & Appl Sci, Mech Engn Dept, TR-06830 Ankara, Turkiye; [Lotfi, Bahram] TOBB Univ Econ & Technol, Mech Engn Dept, Ankara, Turkiye; [Turhan, Cihan] Atilim Univ, Energy Syst Engn Dept, Ankara, Turkiyeen_US
dc.description.abstractThermal comfort describes an occupant's state of mind in a thermal environment, influenced by six parameters: air velocity, relative humidity, air temperature, mean radiant temperature (MRT), clothing value, and metabolic rate. MRT is the most problematic parameter since the obtaining process is difficult and time-consuming. MRT can be acquired by several methods such as calculations, measurements, assumptions, and software programmes. However, the methods have complexities and uncertainties. Comprehensive models are needed to obtain MRT. To this aim, this study presents an alternative method using one of the artificial intelligence methods, Artificial Neural Network (ANN), to predict MRT for indoor environments to abstain from the difficulties and complexities. A case building is selected in a university office building in Ankara, T & uuml;rkiye. The proposed model is developed and coded in a Python programming environment to predict the MRT using ANN. The results indicate that the ANN model, using only four inputs, predicts MRT with an R-2 value of 0.94 compared to the globe thermometer measurement method. The model's advantages over methods include simplicity, time efficiency and learning from the limited datasets such as difficulty in calculating terms like MRT.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.1080/17512549.2025.2457650
dc.identifier.issn1751-2549
dc.identifier.issn1756-2201
dc.identifier.scopus2-s2.0-85216452348
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1080/17512549.2025.2457650
dc.identifier.urihttps://hdl.handle.net/20.500.14411/10473
dc.identifier.wosWOS:001409585500001
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount0
dc.subjectThermal Comforten_US
dc.subjectArtificial Neural Networken_US
dc.subjectMean Radiant Temperatureen_US
dc.subjectIndoor Environmenten_US
dc.subjectOffice Buildingsen_US
dc.titleEstimation of the Mean Radiant Temperature in Office Buildings Using an Artificial Neural Network Developed in a Phyton Environmenten_US
dc.typeArticleen_US
dc.wos.citedbyCount0
dspace.entity.typePublication

Files

Collections