A Stream Clustering Algorithm Using Information Theoretic Clustering Evaluation Function

dc.authoridGokcay, Erhan/0000-0002-4220-199X
dc.authorscopusid7004217859
dc.authorwosidGokcay, Erhan/JOK-0734-2023
dc.contributor.authorGokcay, Erhan
dc.contributor.authorGökçay, Erhan
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T15:30:00Z
dc.date.available2024-07-05T15:30:00Z
dc.date.issued2018
dc.departmentAtılım Universityen_US
dc.department-temp[Gokcay, Erhan] Atilim Univ, Software Engn Dept, Ankara, Turkeyen_US
dc.descriptionGokcay, Erhan/0000-0002-4220-199Xen_US
dc.description.abstractThere are many stream clustering algorithms that can be divided roughly into density based algorithms and hyper spherical distance based algorithms. Only density based algorithms can detect nonlinear clusters and all algorithms assume that the data stream is an ordered sequence of points. Many algorithms need to receive data in buckets to start processing with online and offline iterations with several passes over the data. In this paper we propose a streaming clustering algorithm using a distance function which can separate highly nonlinear clusters in one pass. The distance function used is based on information theoretic measures and it is called Clustering Evaluation Function. The algorithm can handle data one point at a time and find the correct number of clusters even with highly nonlinear clusters. The data points can arrive in any random order and the number of clusters does not need to be specified. Each point is compared against already discovered clusters and each time clusters are joined or divided using an iteratively updated threshold.en_US
dc.identifier.citation0
dc.identifier.doi10.5220/0006786205820588
dc.identifier.endpage588en_US
dc.identifier.isbn9789897582950
dc.identifier.scopus2-s2.0-85048875621
dc.identifier.startpage582en_US
dc.identifier.urihttps://doi.org/10.5220/0006786205820588
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2980
dc.identifier.wosWOS:000838648000057
dc.language.isoenen_US
dc.publisherScitepressen_US
dc.relation.ispartof8th International Conference on Cloud Computing and Services Science (CLOSER) -- MAR 19-21, 2018 -- Funchal, PORTUGALen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectStream Clusteringen_US
dc.subjectData Streamen_US
dc.subjectCluster Analysisen_US
dc.subjectInformation Theoryen_US
dc.subjectDistance Functionen_US
dc.subjectClustering Evaluation Functionen_US
dc.titleA Stream Clustering Algorithm Using Information Theoretic Clustering Evaluation Functionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication07b095f1-e384-448e-8662-cd924cb2139d
relation.isAuthorOfPublication.latestForDiscovery07b095f1-e384-448e-8662-cd924cb2139d
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoveryd86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections