A Stream Clustering Algorithm Using Information Theoretic Clustering Evaluation Function

dc.authorid Gokcay, Erhan/0000-0002-4220-199X
dc.authorscopusid 7004217859
dc.authorwosid Gokcay, Erhan/JOK-0734-2023
dc.contributor.author Gokcay, Erhan
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T15:30:00Z
dc.date.available 2024-07-05T15:30:00Z
dc.date.issued 2018
dc.department Atılım University en_US
dc.department-temp [Gokcay, Erhan] Atilim Univ, Software Engn Dept, Ankara, Turkey en_US
dc.description Gokcay, Erhan/0000-0002-4220-199X en_US
dc.description.abstract There are many stream clustering algorithms that can be divided roughly into density based algorithms and hyper spherical distance based algorithms. Only density based algorithms can detect nonlinear clusters and all algorithms assume that the data stream is an ordered sequence of points. Many algorithms need to receive data in buckets to start processing with online and offline iterations with several passes over the data. In this paper we propose a streaming clustering algorithm using a distance function which can separate highly nonlinear clusters in one pass. The distance function used is based on information theoretic measures and it is called Clustering Evaluation Function. The algorithm can handle data one point at a time and find the correct number of clusters even with highly nonlinear clusters. The data points can arrive in any random order and the number of clusters does not need to be specified. Each point is compared against already discovered clusters and each time clusters are joined or divided using an iteratively updated threshold. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.5220/0006786205820588
dc.identifier.endpage 588 en_US
dc.identifier.isbn 9789897582950
dc.identifier.scopus 2-s2.0-85048875621
dc.identifier.startpage 582 en_US
dc.identifier.uri https://doi.org/10.5220/0006786205820588
dc.identifier.uri https://hdl.handle.net/20.500.14411/2980
dc.identifier.wos WOS:000838648000057
dc.institutionauthor Gökçay, Erhan
dc.language.iso en en_US
dc.publisher Scitepress en_US
dc.relation.ispartof 8th International Conference on Cloud Computing and Services Science (CLOSER) -- MAR 19-21, 2018 -- Funchal, PORTUGAL en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 2
dc.subject Stream Clustering en_US
dc.subject Data Stream en_US
dc.subject Cluster Analysis en_US
dc.subject Information Theory en_US
dc.subject Distance Function en_US
dc.subject Clustering Evaluation Function en_US
dc.title A Stream Clustering Algorithm Using Information Theoretic Clustering Evaluation Function en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 07b095f1-e384-448e-8662-cd924cb2139d
relation.isAuthorOfPublication.latestForDiscovery 07b095f1-e384-448e-8662-cd924cb2139d
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections