Windows Pe Malware Detection Using Ensemble Learning

dc.authoridDamaševičius, Robertas/0000-0001-9990-1084
dc.authoridMisra, Sanjay/0000-0002-3556-9331
dc.authoridazeez, nureni ayofe/0000-0002-1475-2612
dc.authorscopusid53864626700
dc.authorscopusid57223035898
dc.authorscopusid56962766700
dc.authorscopusid57191961078
dc.authorscopusid6603451290
dc.authorwosidDamaševičius, Robertas/E-1387-2017
dc.authorwosidMisra, Sanjay/K-2203-2014
dc.authorwosidazeez, nureni ayofe/I-8328-2018
dc.contributor.authorAzeez, Nureni Ayofe
dc.contributor.authorOdufuwa, Oluwanifise Ebunoluwa
dc.contributor.authorMisra, Sanjay
dc.contributor.authorOluranti, Jonathan
dc.contributor.authorDamasevicius, Robertas
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:18:45Z
dc.date.available2024-07-05T15:18:45Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-temp[Azeez, Nureni Ayofe; Odufuwa, Oluwanifise Ebunoluwa] Univ Lagos, Fac Sci, Dept Comp Sci, Lagos 100001, Nigeria; [Misra, Sanjay; Oluranti, Jonathan] Covenant Univ, Ctr ICT ICE Res, CUCRID, Ota 112212, Nigeria; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, TR-06830 Ankara, Turkey; [Damasevicius, Robertas] Vytautas Magnus Univ, Dept Appl Informat, LT-44404 Kaunas, Lithuaniaen_US
dc.descriptionDamaševičius, Robertas/0000-0001-9990-1084; Misra, Sanjay/0000-0002-3556-9331; azeez, nureni ayofe/0000-0002-1475-2612en_US
dc.description.abstractIn this Internet age, there are increasingly many threats to the security and safety of users daily. One of such threats is malicious software otherwise known as malware (ransomware, Trojans, viruses, etc.). The effect of this threat can lead to loss or malicious replacement of important information (such as bank account details, etc.). Malware creators have been able to bypass traditional methods of malware detection, which can be time-consuming and unreliable for unknown malware. This motivates the need for intelligent ways to detect malware, especially new malware which have not been evaluated or studied before. Machine learning provides an intelligent way to detect malware and comprises two stages: feature extraction and classification. This study suggests an ensemble learning-based method for malware detection. The base stage classification is done by a stacked ensemble of fully-connected and one-dimensional convolutional neural networks (CNNs), whereas the end-stage classification is done by a machine learning algorithm. For a meta-learner, we analyzed and compared 15 machine learning classifiers. For comparison, five machine learning algorithms were used: naive Bayes, decision tree, random forest, gradient boosting, and AdaBoosting. The results of experiments made on the Windows Portable Executable (PE) malware dataset are presented. The best results were obtained by an ensemble of seven neural networks and the ExtraTrees classifier as a final-stage classifier.en_US
dc.identifier.citationcount41
dc.identifier.doi10.3390/informatics8010010
dc.identifier.issn2227-9709
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85103083640
dc.identifier.urihttps://doi.org/10.3390/informatics8010010
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1900
dc.identifier.volume8en_US
dc.identifier.wosWOS:000633109100001
dc.institutionauthorMısra, Sanjay
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.scopus.citedbyCount83
dc.subjectmalware detectionen_US
dc.subjectdeep learningen_US
dc.subjectensemble learningen_US
dc.subjectstackingen_US
dc.titleWindows Pe Malware Detection Using Ensemble Learningen_US
dc.typeArticleen_US
dc.wos.citedbyCount46
dspace.entity.typePublication
relation.isAuthorOfPublication53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections