Windows Pe Malware Detection Using Ensemble Learning
dc.authorid | Damaševičius, Robertas/0000-0001-9990-1084 | |
dc.authorid | Misra, Sanjay/0000-0002-3556-9331 | |
dc.authorid | azeez, nureni ayofe/0000-0002-1475-2612 | |
dc.authorscopusid | 53864626700 | |
dc.authorscopusid | 57223035898 | |
dc.authorscopusid | 56962766700 | |
dc.authorscopusid | 57191961078 | |
dc.authorscopusid | 6603451290 | |
dc.authorwosid | Damaševičius, Robertas/E-1387-2017 | |
dc.authorwosid | Misra, Sanjay/K-2203-2014 | |
dc.authorwosid | azeez, nureni ayofe/I-8328-2018 | |
dc.contributor.author | Azeez, Nureni Ayofe | |
dc.contributor.author | Odufuwa, Oluwanifise Ebunoluwa | |
dc.contributor.author | Misra, Sanjay | |
dc.contributor.author | Oluranti, Jonathan | |
dc.contributor.author | Damasevicius, Robertas | |
dc.contributor.other | Computer Engineering | |
dc.date.accessioned | 2024-07-05T15:18:45Z | |
dc.date.available | 2024-07-05T15:18:45Z | |
dc.date.issued | 2021 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Azeez, Nureni Ayofe; Odufuwa, Oluwanifise Ebunoluwa] Univ Lagos, Fac Sci, Dept Comp Sci, Lagos 100001, Nigeria; [Misra, Sanjay; Oluranti, Jonathan] Covenant Univ, Ctr ICT ICE Res, CUCRID, Ota 112212, Nigeria; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, TR-06830 Ankara, Turkey; [Damasevicius, Robertas] Vytautas Magnus Univ, Dept Appl Informat, LT-44404 Kaunas, Lithuania | en_US |
dc.description | Damaševičius, Robertas/0000-0001-9990-1084; Misra, Sanjay/0000-0002-3556-9331; azeez, nureni ayofe/0000-0002-1475-2612 | en_US |
dc.description.abstract | In this Internet age, there are increasingly many threats to the security and safety of users daily. One of such threats is malicious software otherwise known as malware (ransomware, Trojans, viruses, etc.). The effect of this threat can lead to loss or malicious replacement of important information (such as bank account details, etc.). Malware creators have been able to bypass traditional methods of malware detection, which can be time-consuming and unreliable for unknown malware. This motivates the need for intelligent ways to detect malware, especially new malware which have not been evaluated or studied before. Machine learning provides an intelligent way to detect malware and comprises two stages: feature extraction and classification. This study suggests an ensemble learning-based method for malware detection. The base stage classification is done by a stacked ensemble of fully-connected and one-dimensional convolutional neural networks (CNNs), whereas the end-stage classification is done by a machine learning algorithm. For a meta-learner, we analyzed and compared 15 machine learning classifiers. For comparison, five machine learning algorithms were used: naive Bayes, decision tree, random forest, gradient boosting, and AdaBoosting. The results of experiments made on the Windows Portable Executable (PE) malware dataset are presented. The best results were obtained by an ensemble of seven neural networks and the ExtraTrees classifier as a final-stage classifier. | en_US |
dc.identifier.citationcount | 41 | |
dc.identifier.doi | 10.3390/informatics8010010 | |
dc.identifier.issn | 2227-9709 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85103083640 | |
dc.identifier.uri | https://doi.org/10.3390/informatics8010010 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1900 | |
dc.identifier.volume | 8 | en_US |
dc.identifier.wos | WOS:000633109100001 | |
dc.institutionauthor | Mısra, Sanjay | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 83 | |
dc.subject | malware detection | en_US |
dc.subject | deep learning | en_US |
dc.subject | ensemble learning | en_US |
dc.subject | stacking | en_US |
dc.title | Windows Pe Malware Detection Using Ensemble Learning | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 46 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 53e88841-fdb7-484f-9e08-efa4e6d1a090 | |
relation.isAuthorOfPublication.latestForDiscovery | 53e88841-fdb7-484f-9e08-efa4e6d1a090 | |
relation.isOrgUnitOfPublication | e0809e2c-77a7-4f04-9cb0-4bccec9395fa | |
relation.isOrgUnitOfPublication.latestForDiscovery | e0809e2c-77a7-4f04-9cb0-4bccec9395fa |