The Convergence of <i>q</I>-bernstein Polynomials (0 < <i>q</I> < 1) and Limit <i>q</I>-bernstein Operators in Complex Domains
| dc.contributor.author | Ostrovska, Sofiya | |
| dc.contributor.author | Wang, Heping | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T14:33:52Z | |
| dc.date.available | 2024-07-05T14:33:52Z | |
| dc.date.issued | 2009 | |
| dc.description.abstract | Due to the fact that the convergence properties of q-Bernstein polynomials are not similar to those in the classical case q = 1, their study has become an area of intensive research with a wide scope of open problems and unexpected results. The present paper is focused on the convergence of q-Bernstein polynomials, 0 < q < 1, and related linear operators in complex domains. An analogue of the classical result on the simultaneous approximation is presented. The approximation of analytic functions With the help of the limit q-Bernstein operator is studied. | en_US |
| dc.description.sponsorship | National Natural Science Foundation of China [10871132]; Beijing Natural Science Foundation [1062004]; Key Programs of Beijing Municipal Education Commission [KZ200810028013] | en_US |
| dc.description.sponsorship | The second author was partially supported by National Natural Science Foundation of China (Project no. 10871132), Beijing Natural Science Foundation (1062004) and by a grant from the Key Programs of Beijing Municipal Education Commission (KZ200810028013). | en_US |
| dc.identifier.doi | 10.1216/RMJ-2009-39-4-1279 | |
| dc.identifier.issn | 0035-7596 | |
| dc.identifier.issn | 1945-3795 | |
| dc.identifier.scopus | 2-s2.0-70349770801 | |
| dc.identifier.uri | https://doi.org/10.1216/RMJ-2009-39-4-1279 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/978 | |
| dc.language.iso | en | en_US |
| dc.publisher | Rocky Mt Math Consortium | en_US |
| dc.relation.ispartof | Rocky Mountain Journal of Mathematics | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | q-integers | en_US |
| dc.subject | q-binomial coefficients | en_US |
| dc.subject | q-Bernstein polynomials | en_US |
| dc.subject | uniform convergence | en_US |
| dc.title | The Convergence of <i>q</I>-bernstein Polynomials (0 < <i>q</I> < 1) and Limit <i>q</I>-bernstein Operators in Complex Domains | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Ostrovska, Sofiya | |
| gdc.author.scopusid | 35610828900 | |
| gdc.author.scopusid | 35276301700 | |
| gdc.author.wosid | Ostrovska, Sofiya/AAA-2156-2020 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Wang, Heping] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China | en_US |
| gdc.description.endpage | 1291 | en_US |
| gdc.description.issue | 4 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 1279 | en_US |
| gdc.description.volume | 39 | en_US |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W2064399544 | |
| gdc.identifier.wos | WOS:000269957500011 | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.6404068E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | $q$-integers | |
| gdc.oaire.keywords | $q$-binomial coefficients | |
| gdc.oaire.keywords | $q$-Bernstein polynomials | |
| gdc.oaire.keywords | 41A10 | |
| gdc.oaire.keywords | uniform convergence | |
| gdc.oaire.keywords | 30E10 | |
| gdc.oaire.keywords | 41A35 | |
| gdc.oaire.popularity | 4.2912052E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.34 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.wos.citedcount | 1 | |
| relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |