THE CONVERGENCE OF <i>q</i>-BERNSTEIN POLYNOMIALS (0 < <i>q</i> < 1) AND LIMIT <i>q</i>-BERNSTEIN OPERATORS IN COMPLEX DOMAINS
dc.authorscopusid | 35610828900 | |
dc.authorscopusid | 35276301700 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.author | Wang, Heping | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T14:33:52Z | |
dc.date.available | 2024-07-05T14:33:52Z | |
dc.date.issued | 2009 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Wang, Heping] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China | en_US |
dc.description.abstract | Due to the fact that the convergence properties of q-Bernstein polynomials are not similar to those in the classical case q = 1, their study has become an area of intensive research with a wide scope of open problems and unexpected results. The present paper is focused on the convergence of q-Bernstein polynomials, 0 < q < 1, and related linear operators in complex domains. An analogue of the classical result on the simultaneous approximation is presented. The approximation of analytic functions With the help of the limit q-Bernstein operator is studied. | en_US |
dc.description.sponsorship | National Natural Science Foundation of China [10871132]; Beijing Natural Science Foundation [1062004]; Key Programs of Beijing Municipal Education Commission [KZ200810028013] | en_US |
dc.description.sponsorship | The second author was partially supported by National Natural Science Foundation of China (Project no. 10871132), Beijing Natural Science Foundation (1062004) and by a grant from the Key Programs of Beijing Municipal Education Commission (KZ200810028013). | en_US |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.1216/RMJ-2009-39-4-1279 | |
dc.identifier.endpage | 1291 | en_US |
dc.identifier.issn | 0035-7596 | |
dc.identifier.issn | 1945-3795 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-70349770801 | |
dc.identifier.startpage | 1279 | en_US |
dc.identifier.uri | https://doi.org/10.1216/RMJ-2009-39-4-1279 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/978 | |
dc.identifier.volume | 39 | en_US |
dc.identifier.wos | WOS:000269957500011 | |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Rocky Mt Math Consortium | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | q-integers | en_US |
dc.subject | q-binomial coefficients | en_US |
dc.subject | q-Bernstein polynomials | en_US |
dc.subject | uniform convergence | en_US |
dc.title | THE CONVERGENCE OF <i>q</i>-BERNSTEIN POLYNOMIALS (0 < <i>q</i> < 1) AND LIMIT <i>q</i>-BERNSTEIN OPERATORS IN COMPLEX DOMAINS | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |