THE CONVERGENCE OF <i>q</i>-BERNSTEIN POLYNOMIALS (0 &lt; <i>q</i> &lt; 1) AND LIMIT <i>q</i>-BERNSTEIN OPERATORS IN COMPLEX DOMAINS

dc.authorscopusid35610828900
dc.authorscopusid35276301700
dc.authorwosidOstrovska, Sofiya/AAA-2156-2020
dc.contributor.authorOstrovska, Sofiya
dc.contributor.authorWang, Heping
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T14:33:52Z
dc.date.available2024-07-05T14:33:52Z
dc.date.issued2009
dc.departmentAtılım Universityen_US
dc.department-temp[Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Wang, Heping] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R Chinaen_US
dc.description.abstractDue to the fact that the convergence properties of q-Bernstein polynomials are not similar to those in the classical case q = 1, their study has become an area of intensive research with a wide scope of open problems and unexpected results. The present paper is focused on the convergence of q-Bernstein polynomials, 0 < q < 1, and related linear operators in complex domains. An analogue of the classical result on the simultaneous approximation is presented. The approximation of analytic functions With the help of the limit q-Bernstein operator is studied.en_US
dc.description.sponsorshipNational Natural Science Foundation of China [10871132]; Beijing Natural Science Foundation [1062004]; Key Programs of Beijing Municipal Education Commission [KZ200810028013]en_US
dc.description.sponsorshipThe second author was partially supported by National Natural Science Foundation of China (Project no. 10871132), Beijing Natural Science Foundation (1062004) and by a grant from the Key Programs of Beijing Municipal Education Commission (KZ200810028013).en_US
dc.identifier.citation1
dc.identifier.doi10.1216/RMJ-2009-39-4-1279
dc.identifier.endpage1291en_US
dc.identifier.issn0035-7596
dc.identifier.issn1945-3795
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-70349770801
dc.identifier.startpage1279en_US
dc.identifier.urihttps://doi.org/10.1216/RMJ-2009-39-4-1279
dc.identifier.urihttps://hdl.handle.net/20.500.14411/978
dc.identifier.volume39en_US
dc.identifier.wosWOS:000269957500011
dc.identifier.wosqualityQ3
dc.institutionauthorOstrovska, Sofiya
dc.language.isoenen_US
dc.publisherRocky Mt Math Consortiumen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectq-integersen_US
dc.subjectq-binomial coefficientsen_US
dc.subjectq-Bernstein polynomialsen_US
dc.subjectuniform convergenceen_US
dc.titleTHE CONVERGENCE OF <i>q</i>-BERNSTEIN POLYNOMIALS (0 &lt; <i>q</i> &lt; 1) AND LIMIT <i>q</i>-BERNSTEIN OPERATORS IN COMPLEX DOMAINSen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections