Simulation of through-hardening of SAE 52100 steel bearings - Part I: Determination of material properties

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-v C H verlag Gmbh

Research Projects

Organizational Units

Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

A complete material dataset for the simulation of through-hardening of SAE 52100 (DIN/EN 100Cr6, JIS SUJ2) steel was derived by a combination of experimental and theoretical/computational methods. In the experimental part, alpha/quenching and deformation dilatometry techniques are combined with density measurements, X-Ray diffraction, optical and scanning electron microscopy to determine temperature and phase dependent transformation kinetics parameters, thermal and transformation strains, flow curves and the transformation plasticity parameter. Thermal properties such as thermal conductivity, specific heat and enthalpy and elastic properties are acquired by thermodynamics based material property calculation method using a commercial software. For most of the material properties, the results were in good agreement with the literature, while the minor discrepancies are discussed considering the raw material, equipment used, testing and evaluation procedure. In Part II of this article, compiled material data is validated successfully in an industrial oil and salt-bath quenching of bearing races.

Description

Simsir, Caner/0009-0006-7871-4232

Keywords

Quenching, Simulation, SAE 52100, Steel, Material Data

Turkish CoHE Thesis Center URL

Citation

8

WoS Q

Q4

Scopus Q

Source

Volume

47

Issue

8

Start Page

735

End Page

745

Collections