Yüz tanıma yöntemlerinin karşılaştırılması
dc.contributor.advisor | Şengül, Gökhan | |
dc.contributor.author | Alaısawı, Salem Khalıfa.mohamed | |
dc.contributor.other | Computer Engineering | |
dc.date.accessioned | 2024-07-08T09:42:45Z | |
dc.date.available | 2024-07-08T09:42:45Z | |
dc.date.issued | 2017 | |
dc.department | Fen Bilimleri Enstitüsü / Bilişim Sistemleri Mühendisliği Ana Bilim Dalı | |
dc.description.abstract | Yüz tanıma alanınında üstün sonuçlara ulaşmayı sağlayan en kesin doğruluğu elde etmek için birçok çalışma ve araştırma yürütülmüştür. Bununla birlikte, bu çalışmalar performans ve kesinlik açısından birbirlerinden farklı sonuçlara ulaşmış ve bu durum da bu araştırmaların yüz tanıma algoritmalarını karşılaştırmayı ve hangisinin en iyi sonuç verdiğini göstermeyi elzem hale getirmiştir. Bu çalışma, Temel Bileşenler Analizi- 'Principle Component Analysis (PCA)', Güçlendirilmiş Dayanıklı Özellikler- 'Speeded up Robust Features (SURF)' ve Gri Düzey Eşdizimlilik Matrisi- 'Gray-Level Co-occurrence Matrix (GLCM)' adlı üç yüz tanıma yöntemini karşılaştırmayı amaçlamaktadır. Bu karşılaştırma dört görüntü veritabanı ORL, YALE, FEI, ve FERET üzerinde test edilmiştir. PCA, ORL, YALE, FEI, ve FERET veritabanlarında test edildiğinde diğer iki yöntem SURF ve GLCM'den daha üstün sonuçlar verdiğini göstermiştir. GLCM'nin sonuçları ise daha az kesindir ve diğerleriyle karşılaştırıldığında düşük performans göstermiştir. | |
dc.description.abstract | Many studies and researches were conducted in the field of face recognition in order to get the best accuracy to attain and provide superior results. However, these studies achieved disparate results in terms of performance and accuracy, thus making it necessary to conduct studies that compare face recognition algorithms and emerge with results that demonstrate which of these algorithms give the best results. This study aims to compare three face recognition method, namely Principle Component Analysis (PCA), Speeded Up Robust Features (SURF), and Gray-Level Co-occurrence Matrix (GLCM). This comparison was tested on four images databases ORL, YALE, FEI, and FERET. The experimental results of this study showed that PCA outperformed the other two methods SURF and GLCM when tested on ORL, YALE, FEI, and FERET databases. The results of GLCM were less accurate and showed low performance as compared to the rest. | en |
dc.identifier.endpage | 79 | |
dc.identifier.startpage | 0 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/6135 | |
dc.identifier.yoktezid | 490276 | |
dc.institutionauthor | Şengül, Gökhan | |
dc.language.iso | en | |
dc.subject | Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol | |
dc.subject | Computer Engineering and Computer Science and Control | en_US |
dc.title | Yüz tanıma yöntemlerinin karşılaştırılması | |
dc.title | Comparison of face recognition methods | en_US |
dc.type | Master Thesis | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b | |
relation.isAuthorOfPublication.latestForDiscovery | f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b | |
relation.isOrgUnitOfPublication | e0809e2c-77a7-4f04-9cb0-4bccec9395fa | |
relation.isOrgUnitOfPublication.latestForDiscovery | e0809e2c-77a7-4f04-9cb0-4bccec9395fa |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 490276 Comparison of face recognition methods.pdf
- Size:
- 5.4 MB
- Format:
- Adobe Portable Document Format