Yüz tanıma yöntemlerinin karşılaştırılması

Loading...
Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Computer Engineering
(1998)
The Atılım University Department of Computer Engineering was founded in 1998. The department curriculum is prepared in a way that meets the demands for knowledge and skills after graduation, and is subject to periodical reviews and updates in line with international standards. Our Department offers education in many fields of expertise, such as software development, hardware systems, data structures, computer networks, artificial intelligence, machine learning, image processing, natural language processing, object based design, information security, and cloud computing. The education offered by our department is based on practical approaches, with modern laboratories, projects and internship programs. The undergraduate program at our department was accredited in 2014 by the Association of Evaluation and Accreditation of Engineering Programs (MÜDEK) and was granted the label EUR-ACE, valid through Europe. In addition to the undergraduate program, our department offers thesis or non-thesis graduate degree programs (MS).

Journal Issue

Abstract

Yüz tanıma alanınında üstün sonuçlara ulaşmayı sağlayan en kesin doğruluğu elde etmek için birçok çalışma ve araştırma yürütülmüştür. Bununla birlikte, bu çalışmalar performans ve kesinlik açısından birbirlerinden farklı sonuçlara ulaşmış ve bu durum da bu araştırmaların yüz tanıma algoritmalarını karşılaştırmayı ve hangisinin en iyi sonuç verdiğini göstermeyi elzem hale getirmiştir. Bu çalışma, Temel Bileşenler Analizi- 'Principle Component Analysis (PCA)', Güçlendirilmiş Dayanıklı Özellikler- 'Speeded up Robust Features (SURF)' ve Gri Düzey Eşdizimlilik Matrisi- 'Gray-Level Co-occurrence Matrix (GLCM)' adlı üç yüz tanıma yöntemini karşılaştırmayı amaçlamaktadır. Bu karşılaştırma dört görüntü veritabanı ORL, YALE, FEI, ve FERET üzerinde test edilmiştir. PCA, ORL, YALE, FEI, ve FERET veritabanlarında test edildiğinde diğer iki yöntem SURF ve GLCM'den daha üstün sonuçlar verdiğini göstermiştir. GLCM'nin sonuçları ise daha az kesindir ve diğerleriyle karşılaştırıldığında düşük performans göstermiştir.
Many studies and researches were conducted in the field of face recognition in order to get the best accuracy to attain and provide superior results. However, these studies achieved disparate results in terms of performance and accuracy, thus making it necessary to conduct studies that compare face recognition algorithms and emerge with results that demonstrate which of these algorithms give the best results. This study aims to compare three face recognition method, namely Principle Component Analysis (PCA), Speeded Up Robust Features (SURF), and Gray-Level Co-occurrence Matrix (GLCM). This comparison was tested on four images databases ORL, YALE, FEI, and FERET. The experimental results of this study showed that PCA outperformed the other two methods SURF and GLCM when tested on ORL, YALE, FEI, and FERET databases. The results of GLCM were less accurate and showed low performance as compared to the rest.

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

79