Predicting Credit Card Customer Churn Using Support Vector Machine Based on Bayesian Optimization

dc.authorid Ünlü, Kamil Demirberk/0000-0002-2393-6691
dc.authorwosid Ünlü, Kamil Demirberk/AAL-5952-2020
dc.contributor.author Ünlü, Kamil Demirberk
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-07-05T15:18:39Z
dc.date.available 2024-07-05T15:18:39Z
dc.date.issued 2021
dc.department Atılım University en_US
dc.department-temp ATILIM ÜNİVERSİTESİ en_US
dc.description Ünlü, Kamil Demirberk/0000-0002-2393-6691 en_US
dc.description.abstract In this study, we have employed a hybrid machine learning algorithm to predict customer credit card churn. The proposed model is Support Vector Machine (SVM) with Bayesian Optimization (BO). BO is used to optimize the hyper-parameters of the SVM. Four different kernels are utilized. The hyper-parameters of the utilized kernels are calculated by the BO. The prediction power of the proposed models are compared by four different evaluation metrics. Used metrics are accuracy, precision, recall and F1-score. According to each metrics linear kernel has the highest performance. It has accuracy of %91. The worst performance achieved by sigmoid kernel which has accuracy of %84. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.31801/cfsuasmas.899206
dc.identifier.endpage 836 en_US
dc.identifier.issn 1303-5991
dc.identifier.issn 2618-6470
dc.identifier.issue 2 en_US
dc.identifier.startpage 827 en_US
dc.identifier.trdizinid 498999
dc.identifier.uri https://doi.org/10.31801/cfsuasmas.899206
dc.identifier.uri https://search.trdizin.gov.tr/tr/yayin/detay/498999/predicting-credit-card-customer-churn-using-support-vector-machine-based-on-bayesian-optimization
dc.identifier.volume 70 en_US
dc.identifier.wos WOS:000851379300016
dc.institutionauthor Ünlü, Kamil Demirberk
dc.language.iso en en_US
dc.publisher Ankara Univ, Fac Sci en_US
dc.relation.ispartof Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics en_US
dc.relation.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Predicting Credit Card Customer Churn Using Support Vector Machine Based on Bayesian Optimization en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isAuthorOfPublication.latestForDiscovery b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections