On the <i>q</i>-Bernstein polynomials of rational functions with real poles
dc.authorscopusid | 35610828900 | |
dc.authorscopusid | 9276702800 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.author | Ozban, Ahmet Yasar | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T14:27:17Z | |
dc.date.available | 2024-07-05T14:27:17Z | |
dc.date.issued | 2014 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Ostrovska, Sofiya; Ozban, Ahmet Yasar] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description.abstract | The paper aims to investigate the convergence of the q-Bernstein polynomials B-n,B-q(f; x) attached to rational functions in the case q > 1. The problem reduces to that for the partial fractions (x - alpha)(-J), j is an element of N. The already available results deal with cases, where either the pole a is simple or alpha not equal q(-m), m is an element of N-0. Consequently, the present work is focused on the polynomials Bn,q(f; x) for the functions of the form f (x) = (x - q(-m))(-j) with j >= 2. For such functions, it is proved that the interval of convergence of {B-n,B-q(f; x)} depends not only on the location, but also on the multiplicity of the pole - a phenomenon which has not been considered previously. (C) 2013 Elsevier Inc. All rights reserved. | en_US |
dc.identifier.citation | 7 | |
dc.identifier.doi | 10.1016/j.jmaa.2013.12.009 | |
dc.identifier.endpage | 556 | en_US |
dc.identifier.issn | 0022-247X | |
dc.identifier.issn | 1096-0813 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-84895905602 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 547 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.jmaa.2013.12.009 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/242 | |
dc.identifier.volume | 413 | en_US |
dc.identifier.wos | WOS:000331344600001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.institutionauthor | Özban, Ahmet Yaşar | |
dc.language.iso | en | en_US |
dc.publisher | Academic Press inc Elsevier Science | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | q-Integer | en_US |
dc.subject | q-Bernstein polynomial | en_US |
dc.subject | Convergence | en_US |
dc.subject | Approximation of unbounded functions | en_US |
dc.subject | Rational function | en_US |
dc.subject | Multiple pole | en_US |
dc.title | On the <i>q</i>-Bernstein polynomials of rational functions with real poles | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication | 441f0f87-7ece-46f6-b47b-51c64752df12 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |