On the <i>q</i>-Bernstein polynomials of rational functions with real poles

dc.authorscopusid35610828900
dc.authorscopusid9276702800
dc.authorwosidOstrovska, Sofiya/AAA-2156-2020
dc.contributor.authorOstrovska, Sofiya
dc.contributor.authorOzban, Ahmet Yasar
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T14:27:17Z
dc.date.available2024-07-05T14:27:17Z
dc.date.issued2014
dc.departmentAtılım Universityen_US
dc.department-temp[Ostrovska, Sofiya; Ozban, Ahmet Yasar] Atilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.description.abstractThe paper aims to investigate the convergence of the q-Bernstein polynomials B-n,B-q(f; x) attached to rational functions in the case q > 1. The problem reduces to that for the partial fractions (x - alpha)(-J), j is an element of N. The already available results deal with cases, where either the pole a is simple or alpha not equal q(-m), m is an element of N-0. Consequently, the present work is focused on the polynomials Bn,q(f; x) for the functions of the form f (x) = (x - q(-m))(-j) with j >= 2. For such functions, it is proved that the interval of convergence of {B-n,B-q(f; x)} depends not only on the location, but also on the multiplicity of the pole - a phenomenon which has not been considered previously. (C) 2013 Elsevier Inc. All rights reserved.en_US
dc.identifier.citation7
dc.identifier.doi10.1016/j.jmaa.2013.12.009
dc.identifier.endpage556en_US
dc.identifier.issn0022-247X
dc.identifier.issn1096-0813
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-84895905602
dc.identifier.scopusqualityQ2
dc.identifier.startpage547en_US
dc.identifier.urihttps://doi.org/10.1016/j.jmaa.2013.12.009
dc.identifier.urihttps://hdl.handle.net/20.500.14411/242
dc.identifier.volume413en_US
dc.identifier.wosWOS:000331344600001
dc.identifier.wosqualityQ2
dc.institutionauthorOstrovska, Sofiya
dc.institutionauthorÖzban, Ahmet Yaşar
dc.language.isoenen_US
dc.publisherAcademic Press inc Elsevier Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectq-Integeren_US
dc.subjectq-Bernstein polynomialen_US
dc.subjectConvergenceen_US
dc.subjectApproximation of unbounded functionsen_US
dc.subjectRational functionen_US
dc.subjectMultiple poleen_US
dc.titleOn the <i>q</i>-Bernstein polynomials of rational functions with real polesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication441f0f87-7ece-46f6-b47b-51c64752df12
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections