On the <i>q</I>-bernstein Polynomials of Rational Functions With Real Poles

dc.authorscopusid 35610828900
dc.authorscopusid 9276702800
dc.authorwosid Ostrovska, Sofiya/AAA-2156-2020
dc.contributor.author Ostrovska, Sofiya
dc.contributor.author Ozban, Ahmet Yasar
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T14:27:17Z
dc.date.available 2024-07-05T14:27:17Z
dc.date.issued 2014
dc.department Atılım University en_US
dc.department-temp [Ostrovska, Sofiya; Ozban, Ahmet Yasar] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
dc.description.abstract The paper aims to investigate the convergence of the q-Bernstein polynomials B-n,B-q(f; x) attached to rational functions in the case q > 1. The problem reduces to that for the partial fractions (x - alpha)(-J), j is an element of N. The already available results deal with cases, where either the pole a is simple or alpha not equal q(-m), m is an element of N-0. Consequently, the present work is focused on the polynomials Bn,q(f; x) for the functions of the form f (x) = (x - q(-m))(-j) with j >= 2. For such functions, it is proved that the interval of convergence of {B-n,B-q(f; x)} depends not only on the location, but also on the multiplicity of the pole - a phenomenon which has not been considered previously. (C) 2013 Elsevier Inc. All rights reserved. en_US
dc.identifier.citationcount 7
dc.identifier.doi 10.1016/j.jmaa.2013.12.009
dc.identifier.endpage 556 en_US
dc.identifier.issn 0022-247X
dc.identifier.issn 1096-0813
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-84895905602
dc.identifier.scopusquality Q2
dc.identifier.startpage 547 en_US
dc.identifier.uri https://doi.org/10.1016/j.jmaa.2013.12.009
dc.identifier.uri https://hdl.handle.net/20.500.14411/242
dc.identifier.volume 413 en_US
dc.identifier.wos WOS:000331344600001
dc.identifier.wosquality Q2
dc.institutionauthor Ostrovska, Sofiya
dc.institutionauthor Özban, Ahmet Yaşar
dc.language.iso en en_US
dc.publisher Academic Press inc Elsevier Science en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 7
dc.subject q-Integer en_US
dc.subject q-Bernstein polynomial en_US
dc.subject Convergence en_US
dc.subject Approximation of unbounded functions en_US
dc.subject Rational function en_US
dc.subject Multiple pole en_US
dc.title On the <i>q</I>-bernstein Polynomials of Rational Functions With Real Poles en_US
dc.type Article en_US
dc.wos.citedbyCount 6
dspace.entity.type Publication
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication 441f0f87-7ece-46f6-b47b-51c64752df12
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections