VISUAL AND TEXTUAL FEATURE FUSION FOR AUTOMATIC CUSTOMS TARIFF CLASSIFICATION

dc.authoridTurhan, Cigdem/0000-0002-6595-7095
dc.authoridB. Akar, Gozde/0000-0002-4227-5606
dc.authorscopusid57140298200
dc.authorscopusid55662888100
dc.authorscopusid24315330000
dc.authorscopusid57140615200
dc.authorwosidAkar, Gozde B./AAZ-8753-2020
dc.authorwosidTurhan, Cigdem/AAG-4445-2019
dc.contributor.authorTurhan, Bilgehan
dc.contributor.authorAkar, Gozde B.
dc.contributor.authorTurhan, Cigdem
dc.contributor.authorYuksel, Cihan
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T14:31:30Z
dc.date.available2024-07-05T14:31:30Z
dc.date.issued2015
dc.departmentAtılım Universityen_US
dc.department-temp[Turhan, Bilgehan; Yuksel, Cihan] Infosoft, Informat Syst, Ankara, Turkey; [Akar, Gozde B.] METU, Dept Elect & Elect Engn, Ankara, Turkey; [Turhan, Cigdem] Atilim Univ, Dept Software Engn, Ankara, Turkeyen_US
dc.descriptionTurhan, Cigdem/0000-0002-6595-7095; B. Akar, Gozde/0000-0002-4227-5606en_US
dc.description.abstractThe Harmonized Tariff Schedule for the classification of goods is a major determinant of customs duties and taxes. The basic HS Code is 6 digits long but can be extended according to the needs of the countries such as application of custom duties based on details of the product. Finding the correct, consistent, legally defensible HS Code is at the heart of Import Compliance. However finding the best code can be complicated, especially in the case of specialized products. In this paper, we propose an automatic HS code detection system based on visual properties of the product together with textual analysis of its labels/explanations. The proposed system first uses morphological parsing in order to extract roots of the words occurring in the textual phrases. Processed text information is further processed by the topic modeling module of the system to find the best matching HS Code definitions within the system. The result of the topic modeling is used to trigger visual search based on quantized local features. The proposed algorithm is evaluated using a database of 4494 Binding Tariffs published in 2014 by the European Union. The results show that accuracy rate above 80 % can be achieved for 4-digit HS Codes.en_US
dc.identifier.citationcount3
dc.identifier.doi10.1109/IRI.2015.22
dc.identifier.endpage81en_US
dc.identifier.isbn9781467366564
dc.identifier.scopus2-s2.0-84959173951
dc.identifier.startpage76en_US
dc.identifier.urihttps://doi.org/10.1109/IRI.2015.22
dc.identifier.urihttps://hdl.handle.net/20.500.14411/695
dc.identifier.wosWOS:000380459500011
dc.institutionauthorTurhan, Çiğdem
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartofIEEE 16th International Conference on Information Reuse and Integration -- AUG 13-15, 2015 -- San Francisco, CAen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount6
dc.subjectVisual indexingen_US
dc.subjecttopic modelingen_US
dc.subjectHS Codeen_US
dc.titleVISUAL AND TEXTUAL FEATURE FUSION FOR AUTOMATIC CUSTOMS TARIFF CLASSIFICATIONen_US
dc.typeConference Objecten_US
dc.wos.citedbyCount3
dspace.entity.typePublication
relation.isAuthorOfPublicationdf768b22-7cc0-4650-882f-5af552c7a5f2
relation.isAuthorOfPublication.latestForDiscoverydf768b22-7cc0-4650-882f-5af552c7a5f2
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoveryd86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections