Lifetime Prediction of Single Crystal Nickel-Based Superalloys

dc.authoridKaftancioglu, Utku/0009-0009-6387-1990
dc.authoridBAYRAKTAR, Emin/0000-0003-0644-5249
dc.authorscopusid58785313100
dc.authorscopusid58036947000
dc.authorscopusid12142980800
dc.authorscopusid25521345500
dc.authorwosidAslan, Ozgur/S-1171-2016
dc.contributor.authorKasar, Cagatay
dc.contributor.authorKaftancioglu, Utku
dc.contributor.authorBayraktar, Emin
dc.contributor.authorAslan, Ozgur
dc.date.accessioned2025-02-05T18:36:39Z
dc.date.available2025-02-05T18:36:39Z
dc.date.issued2025
dc.departmentAtılım Universityen_US
dc.department-temp[Kasar, Cagatay] Turkish Aerosp Ind Inc, TR-06980 Ankara, Turkiye; [Kasar, Cagatay; Kaftancioglu, Utku; Aslan, Ozgur] ATILIM Univ, Dept Mech Engn, TR-06830 Ankara, Turkiye; [Bayraktar, Emin] Sch Mech & Mfg Engn, ISAE Supmeca Paris, F-93407 Paris, France; [Aslan, Ozgur] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, Englanden_US
dc.descriptionKaftancioglu, Utku/0009-0009-6387-1990; BAYRAKTAR, Emin/0000-0003-0644-5249en_US
dc.description.abstractSingle crystal nickel-based superalloys are extensively used in turbine blade applications due to their superior creep resistance compared to their polycrystalline counterparts. With the high creep resistance, high cycle fatigue (HCF) and low cycle fatigue (LCF) become primary failure mechanisms for such applications. This study investigates the fatigue life prediction of CMSX-4 using a combination of crystal plasticity and lifetime assessment models. The constitutive crystal plasticity model simulates the anisotropic, rate-dependent deformation behavior of CMSX-4, while the modified Chaboche damage model is used for lifetime assessment, focusing on cleavage stresses on active slip planes to include anisotropy. Both qualitative and quantitative data obtained from HCF experiments on single crystal superalloys with notched geometry were used for validation of the model. Furthermore, artificial neural networks (ANNs) were employed to enhance the accuracy of lifetime predictions across varying temperatures by analyzing the fatigue curves obtained from the damage model. The integration of crystal plasticity, damage mechanics, and ANNs resulted in an accurate prediction of fatigue life and crack initiation points under complex loading conditions of single crystals superalloys.en_US
dc.description.sponsorshipTUBIdot;TAK 2244 Industrial PhD Program [119C037]en_US
dc.description.sponsorshipThis research was funded by the TUB & Idot;TAK 2244 Industrial PhD Program under project number [119C037]. Additionally, publication fees were covered by Turkish Aerospace Industries (TAI).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount0
dc.identifier.doi10.3390/app15010201
dc.identifier.issn2076-3417
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85214495367
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.3390/app15010201
dc.identifier.urihttps://hdl.handle.net/20.500.14411/10429
dc.identifier.volume15en_US
dc.identifier.wosWOS:001393489800001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.scopus.citedbyCount0
dc.subjectcrystal plasticityen_US
dc.subjectartificial neural networksen_US
dc.subjectlifetime assessment modellingen_US
dc.subjectturbine bladesen_US
dc.titleLifetime Prediction of Single Crystal Nickel-Based Superalloysen_US
dc.typeArticleen_US
dc.wos.citedbyCount0
dspace.entity.typePublication

Files

Collections