An Information-Theoretic Instance-Based Classifier

dc.authorid Gokcay, Erhan/0000-0002-4220-199X
dc.authorscopusid 7004217859
dc.authorwosid Gokcay, Erhan/JOK-0734-2023
dc.contributor.author Gokcay, Erhan
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T15:39:55Z
dc.date.available 2024-07-05T15:39:55Z
dc.date.issued 2020
dc.department Atılım University en_US
dc.department-temp [Gokcay, Erhan] Atilim Univ, Software Engn, TR-06830 Ankara, Turkey en_US
dc.description Gokcay, Erhan/0000-0002-4220-199X en_US
dc.description.abstract Classification algorithms are used in many areas to determine new class labels given a training set. Many classification algorithms, linear or not, require a training phase to determine model parameters by using an iterative optimization of the cost function for that particular model or algorithm. The training phase can adjust and fine-tune the boundary line between classes. However, the process may get stuck in a local optimum, which may or may not be close to the desired solution. Another disadvantage of training processes is that upon arrival of a new sample, a retraining of the model is necessary. This work presents a new information-theoretic approach to an instance-based supervised classification. The boundary line between classes is calculated only by the data points without any external parameters or weights, and it is given in closed-form. The separation between classes is nonlinear and smooth, which reduces memorization problems. Since the method does not require a training phase, classified samples can be incorporated in the training set directly, simplifying a streaming classification operation. The boundary line can be replaced with an approximation or regression model for parametric calculations. Features and performance of the proposed method are discussed and compared with similar algorithms. (C) 2020 Elsevier Inc. All rights reserved. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1016/j.ins.2020.05.031
dc.identifier.endpage 276 en_US
dc.identifier.issn 0020-0255
dc.identifier.issn 1872-6291
dc.identifier.scopus 2-s2.0-85085736759
dc.identifier.startpage 263 en_US
dc.identifier.uri https://doi.org/10.1016/j.ins.2020.05.031
dc.identifier.uri https://hdl.handle.net/20.500.14411/3251
dc.identifier.volume 536 en_US
dc.identifier.wos WOS:000556340600015
dc.identifier.wosquality Q1
dc.institutionauthor Gökçay, Erhan
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject Supervised en_US
dc.subject Entropy en_US
dc.subject Information theory en_US
dc.subject Instance-based classification en_US
dc.title An Information-Theoretic Instance-Based Classifier en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication
relation.isAuthorOfPublication 07b095f1-e384-448e-8662-cd924cb2139d
relation.isAuthorOfPublication.latestForDiscovery 07b095f1-e384-448e-8662-cd924cb2139d
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections