An information-theoretic instance-based classifier

dc.authoridGokcay, Erhan/0000-0002-4220-199X
dc.authorscopusid7004217859
dc.authorwosidGokcay, Erhan/JOK-0734-2023
dc.contributor.authorGokcay, Erhan
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T15:39:55Z
dc.date.available2024-07-05T15:39:55Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-temp[Gokcay, Erhan] Atilim Univ, Software Engn, TR-06830 Ankara, Turkeyen_US
dc.descriptionGokcay, Erhan/0000-0002-4220-199Xen_US
dc.description.abstractClassification algorithms are used in many areas to determine new class labels given a training set. Many classification algorithms, linear or not, require a training phase to determine model parameters by using an iterative optimization of the cost function for that particular model or algorithm. The training phase can adjust and fine-tune the boundary line between classes. However, the process may get stuck in a local optimum, which may or may not be close to the desired solution. Another disadvantage of training processes is that upon arrival of a new sample, a retraining of the model is necessary. This work presents a new information-theoretic approach to an instance-based supervised classification. The boundary line between classes is calculated only by the data points without any external parameters or weights, and it is given in closed-form. The separation between classes is nonlinear and smooth, which reduces memorization problems. Since the method does not require a training phase, classified samples can be incorporated in the training set directly, simplifying a streaming classification operation. The boundary line can be replaced with an approximation or regression model for parametric calculations. Features and performance of the proposed method are discussed and compared with similar algorithms. (C) 2020 Elsevier Inc. All rights reserved.en_US
dc.identifier.citation1
dc.identifier.doi10.1016/j.ins.2020.05.031
dc.identifier.endpage276en_US
dc.identifier.issn0020-0255
dc.identifier.issn1872-6291
dc.identifier.scopus2-s2.0-85085736759
dc.identifier.startpage263en_US
dc.identifier.urihttps://doi.org/10.1016/j.ins.2020.05.031
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3251
dc.identifier.volume536en_US
dc.identifier.wosWOS:000556340600015
dc.identifier.wosqualityQ1
dc.institutionauthorGökçay, Erhan
dc.language.isoenen_US
dc.publisherElsevier Science incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSuperviseden_US
dc.subjectEntropyen_US
dc.subjectInformation theoryen_US
dc.subjectInstance-based classificationen_US
dc.titleAn information-theoretic instance-based classifieren_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication07b095f1-e384-448e-8662-cd924cb2139d
relation.isAuthorOfPublication.latestForDiscovery07b095f1-e384-448e-8662-cd924cb2139d
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoveryd86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections