Exploratory Analysis of Topic Interests and Their Evolution in Bioinformatics Research Using Semantic Text Mining and Probabilistic Topic Modeling

dc.contributor.author Gurcan, Fatih
dc.contributor.author Cagiltay, Nergiz Ercil
dc.date.accessioned 2024-07-05T15:16:24Z
dc.date.available 2024-07-05T15:16:24Z
dc.date.issued 2022
dc.description GURCAN, Fatih/0000-0001-9915-6686; Cagiltay, Nergiz/0000-0003-0875-9276 en_US
dc.description.abstract Bioinformatics, which has developed rapidly in recent years with the collaborative contributions of the fields of biology and informatics, provides a deeper perspective on the analysis and understanding of complex biological data. In this regard, bioinformatics has an interdisciplinary background and a rich literature in terms of domain-specific studies. Providing a holistic picture of bioinformatics research by analyzing the major topics and their trends and developmental stages is critical for an understanding of the field. From this perspective, this study aimed to analyze the last 50 years of bioinformatics studies (a total of 71,490 articles) by using an automated text-mining methodology based on probabilistic topic modeling to reveal the main topics, trends, and the evolution of the field. As a result, 24 major topics that reflect the focuses and trends of the field were identified. Based on the discovered topics and their temporal tendencies from 1970 until 2020, the developmental periods of the field were divided into seven phases, from the "newborn" to the "wisdom" stages. Moreover, the findings indicated a recent increase in the popularity of the topics "Statistical Estimation", "Data Analysis Tools", "Genomic Data", "Gene Expression", and "Prediction". The results of the study revealed that, in bioinformatics studies, interest in innovative computing and data analysis methods based on artificial intelligence and machine learning has gradually increased, thereby marking a significant improvement in contemporary analysis tools and techniques based on prediction. en_US
dc.identifier.doi 10.1109/ACCESS.2022.3160795
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85127029630
dc.identifier.uri https://doi.org/10.1109/ACCESS.2022.3160795
dc.identifier.uri https://hdl.handle.net/20.500.14411/1635
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.ispartof IEEE Access
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bioinformatics en_US
dc.subject Market research en_US
dc.subject Biology en_US
dc.subject Analytical models en_US
dc.subject Genomics en_US
dc.subject Proteins en_US
dc.subject Computational modeling en_US
dc.subject Bioinformatics corpus en_US
dc.subject probabilistic topic modeling en_US
dc.subject textual content analysis en_US
dc.subject scientometric analysis en_US
dc.subject bioinformatics topics and trends en_US
dc.title Exploratory Analysis of Topic Interests and Their Evolution in Bioinformatics Research Using Semantic Text Mining and Probabilistic Topic Modeling en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id GURCAN, Fatih/0000-0001-9915-6686
gdc.author.id Cagiltay, Nergiz/0000-0003-0875-9276
gdc.author.scopusid 57194776706
gdc.author.scopusid 16237826800
gdc.author.wosid GURCAN, Fatih/AAJ-7503-2021
gdc.author.wosid Cagiltay, Nergiz/O-3082-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Gurcan, Fatih] Karadeniz Tech Univ, Fac Engn, Dept Comp Engn, TR-61080 Trabzon, Turkey; [Cagiltay, Nergiz Ercil] Atilim Univ, Fac Engn, Dept Software Engn, TR-06830 Ankara, Turkey en_US
gdc.description.endpage 31493 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 31480 en_US
gdc.description.volume 10 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4221073492
gdc.identifier.wos WOS:000773228200001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 23.0
gdc.oaire.influence 3.7920853E-9
gdc.oaire.isgreen false
gdc.oaire.keywords scientometric analysis
gdc.oaire.keywords Bioinformatics corpus
gdc.oaire.keywords textual content analysis
gdc.oaire.keywords bioinformatics topics and trends
gdc.oaire.keywords Electrical engineering. Electronics. Nuclear engineering
gdc.oaire.keywords probabilistic topic modeling
gdc.oaire.keywords TK1-9971
gdc.oaire.popularity 2.0431175E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 5.41504295
gdc.openalex.normalizedpercentile 0.95
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 24
gdc.plumx.crossrefcites 18
gdc.plumx.mendeley 39
gdc.plumx.scopuscites 36
gdc.scopus.citedcount 36
gdc.virtual.author Çağıltay, Nergiz
gdc.wos.citedcount 26
relation.isAuthorOfPublication c99221fa-e0c9-4b73-9f64-54919fcd3c58
relation.isAuthorOfPublication.latestForDiscovery c99221fa-e0c9-4b73-9f64-54919fcd3c58
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections