DISTORTION OF EMBEDDINGS OF BINARY TREES INTO DIAMOND GRAPHS

dc.authoridNelson, Sarah B./0000-0001-5535-5755
dc.authorscopusid57199073846
dc.authorscopusid57199066854
dc.authorscopusid35610828900
dc.authorscopusid7006870450
dc.authorwosidOstrovska, Sofiya/AAA-2156-2020
dc.contributor.authorLeung, Siu Lam
dc.contributor.authorNelson, Sarah
dc.contributor.authorOstrovska, Sofiya
dc.contributor.authorOstrovskii, Mikhail
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:29:57Z
dc.date.available2024-07-05T15:29:57Z
dc.date.issued2018
dc.departmentAtılım Universityen_US
dc.department-temp[Leung, Siu Lam] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA; [Nelson, Sarah] CUNY Hunter Coll, Dept Math & Stat, New York, NY 10065 USA; [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Ostrovskii, Mikhail] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, Queens, NY 11439 USAen_US
dc.descriptionNelson, Sarah B./0000-0001-5535-5755en_US
dc.description.abstractDiamond graphs and binary trees are important examples in the theory of metric embeddings and also in the theory of metric characterizations of Banach spaces. Some results for these families of graphs are parallel to each other; for example superreflexivity of Banach spaces can be characterized both in terms of binary trees (Bourgain, 1986) and diamond graphs (Johnson-Schechtman, 2009). In this connection, it is natural to ask whether one of these families admits uniformly bilipschitz embeddings into the other. This question was answered in the negative by Ostrovskii (2014), who left it open to determine the order of growth of the distortions. The main purpose of this paper is to get a sharp up-to-a-logarithmic-factor estimate for the distortions of embeddings of binary trees into diamond graphs and, more generally, into diamond graphs of any finite branching k >= 2. Estimates for distortions of embeddings of diamonds into infinitely branching diamonds are also obtained.en_US
dc.description.sponsorshipNational Science Foundation [DMS-1201269]; St. John's University; NSFen_US
dc.description.sponsorshipThe last-named author gratefully acknowledges the support by National Science Foundation DMS-1201269 and by the Summer Support of Research program of St. John's University during different stages of work on this paper. Part of the work on this paper was done when the last-named author was a participant in the NSF supported Workshop in Analysis and Probability, Texas A&M University, 2016.en_US
dc.identifier.citation2
dc.identifier.doi10.1090/proc/13750
dc.identifier.endpage704en_US
dc.identifier.issn0002-9939
dc.identifier.issn1088-6826
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85037566403
dc.identifier.startpage695en_US
dc.identifier.urihttps://doi.org/10.1090/proc/13750
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2967
dc.identifier.volume146en_US
dc.identifier.wosWOS:000416972600020
dc.identifier.wosqualityQ2
dc.institutionauthorOstrovska, Sofiya
dc.language.isoenen_US
dc.publisherAmer Mathematical Socen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBinary treeen_US
dc.subjectdiamond graphen_US
dc.subjectdistortion of a bilipschitz embeddingen_US
dc.subjectLipschitz mapen_US
dc.titleDISTORTION OF EMBEDDINGS OF BINARY TREES INTO DIAMOND GRAPHSen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections