DISTORTION OF EMBEDDINGS OF BINARY TREES INTO DIAMOND GRAPHS
dc.authorid | Nelson, Sarah B./0000-0001-5535-5755 | |
dc.authorscopusid | 57199073846 | |
dc.authorscopusid | 57199066854 | |
dc.authorscopusid | 35610828900 | |
dc.authorscopusid | 7006870450 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Leung, Siu Lam | |
dc.contributor.author | Nelson, Sarah | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.author | Ostrovskii, Mikhail | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:29:57Z | |
dc.date.available | 2024-07-05T15:29:57Z | |
dc.date.issued | 2018 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Leung, Siu Lam] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA; [Nelson, Sarah] CUNY Hunter Coll, Dept Math & Stat, New York, NY 10065 USA; [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Ostrovskii, Mikhail] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, Queens, NY 11439 USA | en_US |
dc.description | Nelson, Sarah B./0000-0001-5535-5755 | en_US |
dc.description.abstract | Diamond graphs and binary trees are important examples in the theory of metric embeddings and also in the theory of metric characterizations of Banach spaces. Some results for these families of graphs are parallel to each other; for example superreflexivity of Banach spaces can be characterized both in terms of binary trees (Bourgain, 1986) and diamond graphs (Johnson-Schechtman, 2009). In this connection, it is natural to ask whether one of these families admits uniformly bilipschitz embeddings into the other. This question was answered in the negative by Ostrovskii (2014), who left it open to determine the order of growth of the distortions. The main purpose of this paper is to get a sharp up-to-a-logarithmic-factor estimate for the distortions of embeddings of binary trees into diamond graphs and, more generally, into diamond graphs of any finite branching k >= 2. Estimates for distortions of embeddings of diamonds into infinitely branching diamonds are also obtained. | en_US |
dc.description.sponsorship | National Science Foundation [DMS-1201269]; St. John's University; NSF | en_US |
dc.description.sponsorship | The last-named author gratefully acknowledges the support by National Science Foundation DMS-1201269 and by the Summer Support of Research program of St. John's University during different stages of work on this paper. Part of the work on this paper was done when the last-named author was a participant in the NSF supported Workshop in Analysis and Probability, Texas A&M University, 2016. | en_US |
dc.identifier.citation | 2 | |
dc.identifier.doi | 10.1090/proc/13750 | |
dc.identifier.endpage | 704 | en_US |
dc.identifier.issn | 0002-9939 | |
dc.identifier.issn | 1088-6826 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85037566403 | |
dc.identifier.startpage | 695 | en_US |
dc.identifier.uri | https://doi.org/10.1090/proc/13750 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/2967 | |
dc.identifier.volume | 146 | en_US |
dc.identifier.wos | WOS:000416972600020 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Amer Mathematical Soc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Binary tree | en_US |
dc.subject | diamond graph | en_US |
dc.subject | distortion of a bilipschitz embedding | en_US |
dc.subject | Lipschitz map | en_US |
dc.title | DISTORTION OF EMBEDDINGS OF BINARY TREES INTO DIAMOND GRAPHS | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |