Distortion of Embeddings of Binary Trees Into Diamond Graphs

dc.authorid Nelson, Sarah B./0000-0001-5535-5755
dc.authorscopusid 57199073846
dc.authorscopusid 57199066854
dc.authorscopusid 35610828900
dc.authorscopusid 7006870450
dc.authorwosid Ostrovska, Sofiya/AAA-2156-2020
dc.contributor.author Leung, Siu Lam
dc.contributor.author Nelson, Sarah
dc.contributor.author Ostrovska, Sofiya
dc.contributor.author Ostrovskii, Mikhail
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:29:57Z
dc.date.available 2024-07-05T15:29:57Z
dc.date.issued 2018
dc.department Atılım University en_US
dc.department-temp [Leung, Siu Lam] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA; [Nelson, Sarah] CUNY Hunter Coll, Dept Math & Stat, New York, NY 10065 USA; [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Ostrovskii, Mikhail] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, Queens, NY 11439 USA en_US
dc.description Nelson, Sarah B./0000-0001-5535-5755 en_US
dc.description.abstract Diamond graphs and binary trees are important examples in the theory of metric embeddings and also in the theory of metric characterizations of Banach spaces. Some results for these families of graphs are parallel to each other; for example superreflexivity of Banach spaces can be characterized both in terms of binary trees (Bourgain, 1986) and diamond graphs (Johnson-Schechtman, 2009). In this connection, it is natural to ask whether one of these families admits uniformly bilipschitz embeddings into the other. This question was answered in the negative by Ostrovskii (2014), who left it open to determine the order of growth of the distortions. The main purpose of this paper is to get a sharp up-to-a-logarithmic-factor estimate for the distortions of embeddings of binary trees into diamond graphs and, more generally, into diamond graphs of any finite branching k >= 2. Estimates for distortions of embeddings of diamonds into infinitely branching diamonds are also obtained. en_US
dc.description.sponsorship National Science Foundation [DMS-1201269]; St. John's University; NSF en_US
dc.description.sponsorship The last-named author gratefully acknowledges the support by National Science Foundation DMS-1201269 and by the Summer Support of Research program of St. John's University during different stages of work on this paper. Part of the work on this paper was done when the last-named author was a participant in the NSF supported Workshop in Analysis and Probability, Texas A&M University, 2016. en_US
dc.identifier.citationcount 2
dc.identifier.doi 10.1090/proc/13750
dc.identifier.endpage 704 en_US
dc.identifier.issn 0002-9939
dc.identifier.issn 1088-6826
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85037566403
dc.identifier.startpage 695 en_US
dc.identifier.uri https://doi.org/10.1090/proc/13750
dc.identifier.uri https://hdl.handle.net/20.500.14411/2967
dc.identifier.volume 146 en_US
dc.identifier.wos WOS:000416972600020
dc.identifier.wosquality Q2
dc.institutionauthor Ostrovska, Sofiya
dc.language.iso en en_US
dc.publisher Amer Mathematical Soc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 2
dc.subject Binary tree en_US
dc.subject diamond graph en_US
dc.subject distortion of a bilipschitz embedding en_US
dc.subject Lipschitz map en_US
dc.title Distortion of Embeddings of Binary Trees Into Diamond Graphs en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections