Spectrum of a Q-Deformed Schrödinger Equation by Means of the Variational Method
dc.authorscopusid | 58519917500 | |
dc.authorscopusid | 35782583700 | |
dc.authorscopusid | 49864511100 | |
dc.authorwosid | Sevinik-Adiguzel, Rezan/KMA-1274-2024 | |
dc.authorwosid | Turan, Mehmet/JYQ-4459-2024 | |
dc.contributor.author | Calisir, Ayse Dogan | |
dc.contributor.author | Turan, Mehmet | |
dc.contributor.author | Turan, Mehmet | |
dc.contributor.author | Adiguzel, Rezan Sevinik | |
dc.contributor.author | Sevinik Adıgüzel, Rezan | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:22:25Z | |
dc.date.available | 2024-07-05T15:22:25Z | |
dc.date.issued | 2023 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Calisir, Ayse Dogan; Turan, Mehmet; Adiguzel, Rezan Sevinik] Atilim Univ, Dept Math, Ankara, Turkiye; [Calisir, Ayse Dogan] Middle East Tech Univ, Dept Math, Ankara, Turkiye; [Calisir, Ayse Dogan] Atilim Univ, Dept Math, TR-06830 Ankara, Turkiye | en_US |
dc.description.abstract | In this work, the q-deformed Schr & ouml;dinger equations defined in different form of the q-Hamiltonian for q-harmonic oscillator are considered with symmetric, asymmetric, and non-polynomial potentials. The spectrum of the q-Hamiltonian is obtained by using the Rayleigh-Ritz variational method in which the discrete q-Hermite I polynomials are taken as the basis. As applications, q-harmonic, purely q-quartic, and q-quartic oscillators are examined in the class of symmetric polynomial potentials. Moreover, the q-version of Gaussian potential for an example of a non-polynomial symmetric potential and a specific example of q-version of asymmetric double well potential are presented. Numerous results are given for these potentials for several values of q. The limit relation as q ? 1(-) is discussed. The obtained results of ground-and excited-state energies of the purely q-quartic oscillator and the accuracy of the ground-state energy levels are compared with the existing results. Also, the results are compared with the classical case appearing in the literature in the limiting case q?1(-). | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1002/mma.9586 | |
dc.identifier.endpage | 18705 | en_US |
dc.identifier.issn | 0170-4214 | |
dc.identifier.issn | 1099-1476 | |
dc.identifier.issue | 18 | en_US |
dc.identifier.scopus | 2-s2.0-85166530335 | |
dc.identifier.startpage | 18693 | en_US |
dc.identifier.uri | https://doi.org/10.1002/mma.9586 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/2199 | |
dc.identifier.volume | 46 | en_US |
dc.identifier.wos | WOS:001040693600001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | discrete Schr & ouml | en_US |
dc.subject | dinger equation | en_US |
dc.subject | discrete q-Hermite I polynomials | en_US |
dc.subject | purely q-quartic oscillator | en_US |
dc.subject | Rayleigh-Ritz variational method | en_US |
dc.title | Spectrum of a Q-Deformed Schrödinger Equation by Means of the Variational Method | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5010d3f8-f1f2-4750-b086-e5b5edacaef7 | |
relation.isAuthorOfPublication | a13db494-31aa-41e0-b214-4e23a78dc41b | |
relation.isAuthorOfPublication.latestForDiscovery | 5010d3f8-f1f2-4750-b086-e5b5edacaef7 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Spectrum of a q-deformed Schrödinger equationMMA_2023_ADC_MT_RSA.pdf
- Size:
- 470.83 KB
- Format:
- Adobe Portable Document Format