Spectrum of a Q-Deformed Schrödinger Equation by Means of the Variational Method

dc.authorscopusid 58519917500
dc.authorscopusid 35782583700
dc.authorscopusid 49864511100
dc.authorwosid Sevinik-Adiguzel, Rezan/KMA-1274-2024
dc.authorwosid Turan, Mehmet/JYQ-4459-2024
dc.contributor.author Calisir, Ayse Dogan
dc.contributor.author Turan, Mehmet
dc.contributor.author Adiguzel, Rezan Sevinik
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:22:25Z
dc.date.available 2024-07-05T15:22:25Z
dc.date.issued 2023
dc.department Atılım University en_US
dc.department-temp [Calisir, Ayse Dogan; Turan, Mehmet; Adiguzel, Rezan Sevinik] Atilim Univ, Dept Math, Ankara, Turkiye; [Calisir, Ayse Dogan] Middle East Tech Univ, Dept Math, Ankara, Turkiye; [Calisir, Ayse Dogan] Atilim Univ, Dept Math, TR-06830 Ankara, Turkiye en_US
dc.description.abstract In this work, the q-deformed Schr & ouml;dinger equations defined in different form of the q-Hamiltonian for q-harmonic oscillator are considered with symmetric, asymmetric, and non-polynomial potentials. The spectrum of the q-Hamiltonian is obtained by using the Rayleigh-Ritz variational method in which the discrete q-Hermite I polynomials are taken as the basis. As applications, q-harmonic, purely q-quartic, and q-quartic oscillators are examined in the class of symmetric polynomial potentials. Moreover, the q-version of Gaussian potential for an example of a non-polynomial symmetric potential and a specific example of q-version of asymmetric double well potential are presented. Numerous results are given for these potentials for several values of q. The limit relation as q ? 1(-) is discussed. The obtained results of ground-and excited-state energies of the purely q-quartic oscillator and the accuracy of the ground-state energy levels are compared with the existing results. Also, the results are compared with the classical case appearing in the literature in the limiting case q?1(-). en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1002/mma.9586
dc.identifier.endpage 18705 en_US
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.issue 18 en_US
dc.identifier.scopus 2-s2.0-85166530335
dc.identifier.startpage 18693 en_US
dc.identifier.uri https://doi.org/10.1002/mma.9586
dc.identifier.uri https://hdl.handle.net/20.500.14411/2199
dc.identifier.volume 46 en_US
dc.identifier.wos WOS:001040693600001
dc.identifier.wosquality Q1
dc.institutionauthor Turan, Mehmet
dc.institutionauthor Sevinik Adıgüzel, Rezan
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject discrete Schr & ouml en_US
dc.subject dinger equation en_US
dc.subject discrete q-Hermite I polynomials en_US
dc.subject purely q-quartic oscillator en_US
dc.subject Rayleigh-Ritz variational method en_US
dc.title Spectrum of a Q-Deformed Schrödinger Equation by Means of the Variational Method en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isAuthorOfPublication a13db494-31aa-41e0-b214-4e23a78dc41b
relation.isAuthorOfPublication.latestForDiscovery 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Spectrum of a q-deformed Schrödinger equationMMA_2023_ADC_MT_RSA.pdf
Size:
470.83 KB
Format:
Adobe Portable Document Format

Collections