Spectrum of a Q-Deformed Schrödinger Equation by Means of the Variational Method

dc.authorscopusid58519917500
dc.authorscopusid35782583700
dc.authorscopusid49864511100
dc.authorwosidSevinik-Adiguzel, Rezan/KMA-1274-2024
dc.authorwosidTuran, Mehmet/JYQ-4459-2024
dc.contributor.authorCalisir, Ayse Dogan
dc.contributor.authorTuran, Mehmet
dc.contributor.authorTuran, Mehmet
dc.contributor.authorAdiguzel, Rezan Sevinik
dc.contributor.authorSevinik Adıgüzel, Rezan
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:22:25Z
dc.date.available2024-07-05T15:22:25Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-temp[Calisir, Ayse Dogan; Turan, Mehmet; Adiguzel, Rezan Sevinik] Atilim Univ, Dept Math, Ankara, Turkiye; [Calisir, Ayse Dogan] Middle East Tech Univ, Dept Math, Ankara, Turkiye; [Calisir, Ayse Dogan] Atilim Univ, Dept Math, TR-06830 Ankara, Turkiyeen_US
dc.description.abstractIn this work, the q-deformed Schr & ouml;dinger equations defined in different form of the q-Hamiltonian for q-harmonic oscillator are considered with symmetric, asymmetric, and non-polynomial potentials. The spectrum of the q-Hamiltonian is obtained by using the Rayleigh-Ritz variational method in which the discrete q-Hermite I polynomials are taken as the basis. As applications, q-harmonic, purely q-quartic, and q-quartic oscillators are examined in the class of symmetric polynomial potentials. Moreover, the q-version of Gaussian potential for an example of a non-polynomial symmetric potential and a specific example of q-version of asymmetric double well potential are presented. Numerous results are given for these potentials for several values of q. The limit relation as q ? 1(-) is discussed. The obtained results of ground-and excited-state energies of the purely q-quartic oscillator and the accuracy of the ground-state energy levels are compared with the existing results. Also, the results are compared with the classical case appearing in the literature in the limiting case q?1(-).en_US
dc.identifier.citation0
dc.identifier.doi10.1002/mma.9586
dc.identifier.endpage18705en_US
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.issue18en_US
dc.identifier.scopus2-s2.0-85166530335
dc.identifier.startpage18693en_US
dc.identifier.urihttps://doi.org/10.1002/mma.9586
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2199
dc.identifier.volume46en_US
dc.identifier.wosWOS:001040693600001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectdiscrete Schr & oumlen_US
dc.subjectdinger equationen_US
dc.subjectdiscrete q-Hermite I polynomialsen_US
dc.subjectpurely q-quartic oscillatoren_US
dc.subjectRayleigh-Ritz variational methoden_US
dc.titleSpectrum of a Q-Deformed Schrödinger Equation by Means of the Variational Methoden_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isAuthorOfPublicationa13db494-31aa-41e0-b214-4e23a78dc41b
relation.isAuthorOfPublication.latestForDiscovery5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Spectrum of a q-deformed Schrödinger equationMMA_2023_ADC_MT_RSA.pdf
Size:
470.83 KB
Format:
Adobe Portable Document Format

Collections