Spectrum of a Q-Deformed Schrödinger Equation by Means of the Variational Method

dc.contributor.author Calisir, Ayse Dogan
dc.contributor.author Turan, Mehmet
dc.contributor.author Adiguzel, Rezan Sevinik
dc.date.accessioned 2024-07-05T15:22:25Z
dc.date.available 2024-07-05T15:22:25Z
dc.date.issued 2023
dc.description.abstract In this work, the q-deformed Schr & ouml;dinger equations defined in different form of the q-Hamiltonian for q-harmonic oscillator are considered with symmetric, asymmetric, and non-polynomial potentials. The spectrum of the q-Hamiltonian is obtained by using the Rayleigh-Ritz variational method in which the discrete q-Hermite I polynomials are taken as the basis. As applications, q-harmonic, purely q-quartic, and q-quartic oscillators are examined in the class of symmetric polynomial potentials. Moreover, the q-version of Gaussian potential for an example of a non-polynomial symmetric potential and a specific example of q-version of asymmetric double well potential are presented. Numerous results are given for these potentials for several values of q. The limit relation as q ? 1(-) is discussed. The obtained results of ground-and excited-state energies of the purely q-quartic oscillator and the accuracy of the ground-state energy levels are compared with the existing results. Also, the results are compared with the classical case appearing in the literature in the limiting case q?1(-). en_US
dc.identifier.doi 10.1002/mma.9586
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.scopus 2-s2.0-85166530335
dc.identifier.uri https://doi.org/10.1002/mma.9586
dc.identifier.uri https://hdl.handle.net/20.500.14411/2199
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof Mathematical Methods in the Applied Sciences
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject discrete Schr & ouml en_US
dc.subject dinger equation en_US
dc.subject discrete q-Hermite I polynomials en_US
dc.subject purely q-quartic oscillator en_US
dc.subject Rayleigh-Ritz variational method en_US
dc.title Spectrum of a Q-Deformed Schrödinger Equation by Means of the Variational Method en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 58519917500
gdc.author.scopusid 35782583700
gdc.author.scopusid 49864511100
gdc.author.wosid Sevinik-Adiguzel, Rezan/KMA-1274-2024
gdc.author.wosid Turan, Mehmet/JYQ-4459-2024
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Calisir, Ayse Dogan; Turan, Mehmet; Adiguzel, Rezan Sevinik] Atilim Univ, Dept Math, Ankara, Turkiye; [Calisir, Ayse Dogan] Middle East Tech Univ, Dept Math, Ankara, Turkiye; [Calisir, Ayse Dogan] Atilim Univ, Dept Math, TR-06830 Ankara, Turkiye en_US
gdc.description.endpage 18705 en_US
gdc.description.issue 18 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 18693 en_US
gdc.description.volume 46 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4385408038
gdc.identifier.wos WOS:001040693600001
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5152056E-9
gdc.oaire.isgreen false
gdc.oaire.keywords discrete \(q\)-Hermite I polynomials
gdc.oaire.keywords Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
gdc.oaire.keywords discrete Schrödinger equation
gdc.oaire.keywords Binomial coefficients; factorials; \(q\)-identities
gdc.oaire.keywords \(q\)-calculus and related topics
gdc.oaire.keywords Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
gdc.oaire.keywords Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
gdc.oaire.keywords Rayleigh-Ritz variational method
gdc.oaire.keywords Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
gdc.oaire.keywords purely \(q\)-quartic oscillator
gdc.oaire.popularity 2.0979436E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.13
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Turan, Mehmet
gdc.virtual.author Sevinik Adıgüzel, Rezan
gdc.wos.citedcount 0
relation.isAuthorOfPublication 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isAuthorOfPublication a13db494-31aa-41e0-b214-4e23a78dc41b
relation.isAuthorOfPublication.latestForDiscovery 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Spectrum of a q-deformed Schrödinger equationMMA_2023_ADC_MT_RSA.pdf
Size:
470.83 KB
Format:
Adobe Portable Document Format

Collections