Classification theorems for general orthogonal polynomials on the unit circle

dc.authoridKhrushchev, Sergey/0000-0002-8854-5317
dc.authorscopusid7004133014
dc.authorwosidKhrushchev, Sergey/AAH-8676-2019
dc.contributor.authorKhrushchev, Sergey
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:08:51Z
dc.date.available2024-07-05T15:08:51Z
dc.date.issued2002
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.descriptionKhrushchev, Sergey/0000-0002-8854-5317en_US
dc.description.abstractThe set P of all probability measures a on the unit circle T splits into three disjoint subsets depending on properties of the derived set of {\phi(n)\(2) dsigma}(ngreater than or equal to0), denoted by Lim(sigma). Here {phi(n)}(ngreater than or equal to0) are orthogonal polynomials in L-2(dsigma). The first subset is the set of Rakhmanov measures, i.e., of sigma is an element of P with {m} = Lim(sigma), m being the normalized (m(T) = 1) Lebesgue measure on T. The second subset Mar(T) consists of Markoff measures, i.e., of sigma is an element of P with m is not an element of Lim(sigma), and is in fact the subject of study for the present paper. A measure sigma, belongs to Mar(T) iff there are epsilon > 0 and l > 0 such that sup{\a(n+j)\: 0 less than or equal to j less than or equal to l) > epsilon, n = 0, 1, 2,..., {a(n)} is the Geronimus parameters (= reflection coefficients) of sigma. We use this equivalence to describe the asymptotic behavior of the zeros of the corresponding orthogonal polynomials (see Theorem G). The third subset consists of sigma is an element of P with {m} not subset of or equal toLim(sigma). We show that sigma is ratio asymptotic iff either sigma is a Rakhmanov measure or sigma satisfies the Lopez condition (which implies sigma is an element of Mar(T)). Measures sigma satisfying Lim(sigma) = {v} (i.e., weakly asymptotic measures) are also classified. Either v is the sum of equal point masses placed at the roots of z(n) = lambda, lambda is an element of T, n = 1, 2,..., or v is the equilibrium measure (with respect to the logarithmic kernel) for the inverse image under an m-preserving endomorphism z -->z(n), = 1, 2,..., of a closed arc J (including J = T) with removed open concentric are J(0) (including J(0) = empty set). Next, weakly asymptotic measures are completely described in terms of their Geronimus parameters. Finally, we obtain explicit formulae for the parameters of the equilibrium measures v and show that these measures satisfy {v} = Lim(v). (C) 2002 Elsevier Science (USA).en_US
dc.identifier.citation25
dc.identifier.doi10.1006/jath.2002.3674
dc.identifier.endpage342en_US
dc.identifier.issn0021-9045
dc.identifier.issn1096-0430
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-0036071576
dc.identifier.startpage268en_US
dc.identifier.urihttps://doi.org/10.1006/jath.2002.3674
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1113
dc.identifier.volume116en_US
dc.identifier.wosWOS:000176490200005
dc.identifier.wosqualityQ2
dc.institutionauthorKhrushchev, SV
dc.language.isoenen_US
dc.publisherAcademic Press inc Elsevier Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleClassification theorems for general orthogonal polynomials on the unit circleen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication96955c8f-cdd9-434b-80b5-0e40e6fa87f7
relation.isAuthorOfPublication.latestForDiscovery96955c8f-cdd9-434b-80b5-0e40e6fa87f7
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections