Prescribed Asymptotic Behavior of Nonlinear Dynamic Equations Under Impulsive Perturbations

dc.authoridDogru Akgol, Sibel/0000-0003-3513-1046
dc.authorscopusid56550216700
dc.authorscopusid57195267165
dc.authorwosidDogru Akgol, Sibel/AAL-5957-2020
dc.contributor.authorZafer, Agacik
dc.contributor.authorDogru Akgol, Sibel
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:23:09Z
dc.date.available2024-07-05T15:23:09Z
dc.date.issued2024
dc.departmentAtılım Universityen_US
dc.department-temp[Zafer, Agacik] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwait; [Dogru Akgol, Sibel] Atilim Univ, Dept Math, TR-06830 Ankara, Turkiyeen_US
dc.descriptionDogru Akgol, Sibel/0000-0003-3513-1046en_US
dc.description.abstractThe asymptotic integration problem has a rich historical background and has been extensively studied in the context of ordinary differential equations, delay differential equations, dynamic equations, and impulsive differential equations. However, the problem has not been explored for impulsive dynamic equations due to the lack of essential tools such as principal and nonprincipal solutions, as well as certain compactness results. In this work, by making use of the principal and nonprincipal solutions of the associated linear dynamic equation, recently obtained in [Acta Appl. Math. 188, 2 (2023)], we investigate the asymptotic integration problem for a specific class of nonlinear impulsive dynamic equations. Under certain conditions, we prove that the given impulsive dynamic equation possesses solutions with a prescribed asymptotic behavior at infinity. These solutions can be expressed in terms of principal and nonprincipal solutions as in differential equations. In addition, the necessary compactness results are also established. Our findings are particularly valuable for better understanding the long-time behavior of solutions, modeling real-world problems, and analyzing the solutions of boundary value problems on semi-infinite intervals.en_US
dc.identifier.citation0
dc.identifier.doi10.1007/s12346-024-01058-0
dc.identifier.issn1575-5460
dc.identifier.issn1662-3592
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85194185696
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s12346-024-01058-0
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2266
dc.identifier.volume23en_US
dc.identifier.wosWOS:001230268000001
dc.identifier.wosqualityQ1
dc.institutionauthorDoğru Akgöl, Sibel
dc.language.isoenen_US
dc.publisherSpringer Basel Agen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectImpulsiveen_US
dc.subjectDynamic equationen_US
dc.subjectTime scaleen_US
dc.subjectDiscontinuousen_US
dc.subjectPrincipalen_US
dc.subjectNonprincipalen_US
dc.subjectCompactness criteriaen_US
dc.titlePrescribed Asymptotic Behavior of Nonlinear Dynamic Equations Under Impulsive Perturbationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication28f51739-3ac6-42ea-8c4b-4d2d9e7e81e1
relation.isAuthorOfPublication.latestForDiscovery28f51739-3ac6-42ea-8c4b-4d2d9e7e81e1
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Prescribed Asymptotic Behavior of Nonlinear QTDS_2024.pdf
Size:
319.11 KB
Format:
Adobe Portable Document Format

Collections