The local Mobius equation and decomposition theorems in Riemannian geometry

dc.authoridGarcia-Rio, Eduardo/0000-0003-1195-1664
dc.authorscopusid7004064458
dc.authorscopusid6604093071
dc.authorscopusid6602317911
dc.authorwosidGarcia-Rio, Eduardo/B-5949-2015
dc.contributor.authorFernández-López, M
dc.contributor.authorGarcía-Río, E
dc.contributor.authorKupeli, DN
dc.date.accessioned2024-07-05T15:09:22Z
dc.date.available2024-07-05T15:09:22Z
dc.date.issued2002
dc.departmentAtılım Universityen_US
dc.department-tempUniv Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain; Atilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.descriptionGarcia-Rio, Eduardo/0000-0003-1195-1664en_US
dc.description.abstractA partial differential equation, the local Mobius equation, is introduced in Riemannian geometry which completely characterizes the local twisted product structure of a Riemannian manifold. Also the characterizations of warped product and product structures of Riemannian manifolds are made by the local Mobius equation and an additional partial differential equation.en_US
dc.identifier.citation1
dc.identifier.doi10.4153/CMB-2002-040-6
dc.identifier.endpage387en_US
dc.identifier.issn0008-4395
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-0036762420
dc.identifier.startpage378en_US
dc.identifier.urihttps://doi.org/10.4153/CMB-2002-040-6
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1150
dc.identifier.volume45en_US
dc.identifier.wosWOS:000179273500006
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherCanadian Mathematical Socen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectsubmersionen_US
dc.subjectMobius equationen_US
dc.subjecttwisted producten_US
dc.subjectwarped producten_US
dc.subjectproduct Riemannian manifoldsen_US
dc.titleThe local Mobius equation and decomposition theorems in Riemannian geometryen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Collections