Exclusion Zone Minimization and Optimal Operational Mode Selection for Co-Existent Geostationary and Non-Geostationary Satellites

dc.authoridOZTURK, FAIK/0000-0003-3316-6384
dc.authoridKara, Ali/0000-0002-9739-7619
dc.authorscopusid57297464600
dc.authorscopusid7102824862
dc.contributor.authorOzturk, Faik
dc.contributor.authorKara, Ali
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T15:17:17Z
dc.date.available2024-07-05T15:17:17Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Ozturk, Faik] Atilim Univ, Grad Sch Nat & Appl Sci, Ankara, Turkey; [Ozturk, Faik] TURKSAT AS, Satellite Operat, Ankara, Turkey; [Kara, Ali] Gazi Univ, Dept Elect & Elect Engn, Ankara, Turkeyen_US
dc.descriptionOZTURK, FAIK/0000-0003-3316-6384; Kara, Ali/0000-0002-9739-7619en_US
dc.description.abstractThe number of satellites has been increasing in both geostationary (GEO) and non-geostationary (NGEO) earth orbits. Due to the limited availability of spectrum resources, the interference risk among these satellite networks has been increasing consequently. In such a scenario, the protection of existent GEO transmissions is crucial. In this paper, the co-existence downlink interference from a typical low earth orbit (LEO) constellation to earth stations of GEO satellites is examined for minimization of exclusion zone on the equatorial region. Two different operational scenario based on modulation and coding (MODCOD) with/without spread spectrum for the LEO system are considered. A multiobjective optimization problem (MOP) is formulated for nondominant solutions set based on exclusive angle minimization and bandwidth utilization of the LEO link. It is shown that the exclusive angle can be reduced up to 21.3% and 19.6%, compared with the initial anchor point at the transmission bit rates of 100 and 200 Mbps, respectively. The proposed optimal operational setting minimizes the interference risk to the GEO satellite network as well as maintains quality of service (QoS) for the LEO communication network. The results provide optimal operational mode selection for LEO satellite operators and/or decision makers.en_US
dc.identifier.citationcount2
dc.identifier.doi10.1002/sat.1433
dc.identifier.endpage203en_US
dc.identifier.issn1542-0973
dc.identifier.issn1542-0981
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85117220908
dc.identifier.scopusqualityQ2
dc.identifier.startpage191en_US
dc.identifier.urihttps://doi.org/10.1002/sat.1433
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1737
dc.identifier.volume40en_US
dc.identifier.wosWOS:000708692700001
dc.identifier.wosqualityQ3
dc.institutionauthorKara, Ali
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount7
dc.subjectco-existence interferenceen_US
dc.subjectexclusion zoneen_US
dc.subjectexclusive angleen_US
dc.subjectmultiobjective optimizationen_US
dc.subjectsatellite communicationen_US
dc.titleExclusion Zone Minimization and Optimal Operational Mode Selection for Co-Existent Geostationary and Non-Geostationary Satellitesen_US
dc.typeArticleen_US
dc.wos.citedbyCount4
dspace.entity.typePublication
relation.isAuthorOfPublicationbe728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication.latestForDiscoverybe728837-c599-49c1-8e8d-81b90219bb15
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscoveryc3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections