A Combined Approach for Customer Profiling in Video on Demand Services Using Clustering and Association Rule Mining

dc.authorid Turhan, Cigdem/0000-0002-6595-7095
dc.authorid Peker, Serhat/0000-0002-6876-3982
dc.authorid , Sinemmg/0000-0003-4408-9601
dc.authorscopusid 57195278688
dc.authorscopusid 57192819774
dc.authorscopusid 24315330000
dc.authorwosid Turhan, Cigdem/AAG-4445-2019
dc.authorwosid Peker, Serhat/A-9677-2016
dc.contributor.author Guney, Sinem
dc.contributor.author Peker, Serhat
dc.contributor.author Turhan, Cigdem
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T15:41:04Z
dc.date.available 2024-07-05T15:41:04Z
dc.date.issued 2020
dc.department Atılım University en_US
dc.department-temp [Guney, Sinem; Turhan, Cigdem] Atilim Univ, Dept Software Engn, TR-6830 Ankara, Turkey; [Peker, Serhat] Izmir Bakircay Univ, Dept Management Informat Syst, TR-35665 Izmir, Turkey en_US
dc.description Turhan, Cigdem/0000-0002-6595-7095; Peker, Serhat/0000-0002-6876-3982; , Sinemmg/0000-0003-4408-9601 en_US
dc.description.abstract The purpose of this paper is to propose a combined data mining approach for analyzing and profiling customers in video on demand (VoD) services. The proposed approach integrates clustering and association rule mining. For customer segmentation, the LRFMP model is employed alongside the k-means and Apriori algorithms to generate association rules between the identified customer groups and content genres. The applicability of the proposed approach is demonstrated on real-world data obtained from an Internet protocol television (IPTV) operator. In this way, four main customer groups are identified: "high consuming-valuable subscribers", "less consuming subscribers","less consuming-loyal subscribers" and "disloyal subscribers". In detail, for each group of customers, a different marketing strategy or action is proposed, mainly campaigns, special-day promotions, discounted materials, offering favorite content, etc. Further, genres preferred by these customer segments are extracted using the Apriori algorithm. The results obtained from this case study also show that the proposed approach provides an efficient tool to form different customer segments with specific content rental characteristics, and to generate useful association rules for these distinct groups. The proposed combined approach in this research would be beneficial for IPTV service providers to implement effective CRM and customer-based marketing strategies. en_US
dc.identifier.citationcount 9
dc.identifier.doi 10.1109/ACCESS.2020.2992064
dc.identifier.endpage 84335 en_US
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85084959479
dc.identifier.scopusquality Q1
dc.identifier.startpage 84326 en_US
dc.identifier.uri https://doi.org/10.1109/ACCESS.2020.2992064
dc.identifier.uri https://hdl.handle.net/20.500.14411/3417
dc.identifier.volume 8 en_US
dc.identifier.wos WOS:000549526700008
dc.identifier.wosquality Q2
dc.institutionauthor Turhan, Çiğdem
dc.institutionauthor Peker, Serhat
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 22
dc.subject Customer segmentation en_US
dc.subject data mining en_US
dc.subject clustering en_US
dc.subject association rules en_US
dc.subject RFM model en_US
dc.subject VoD services en_US
dc.title A Combined Approach for Customer Profiling in Video on Demand Services Using Clustering and Association Rule Mining en_US
dc.type Article en_US
dc.wos.citedbyCount 11
dspace.entity.type Publication
relation.isAuthorOfPublication df768b22-7cc0-4650-882f-5af552c7a5f2
relation.isAuthorOfPublication 70a2c9a7-c94d-4227-be09-c233f93d3b2f
relation.isAuthorOfPublication.latestForDiscovery df768b22-7cc0-4650-882f-5af552c7a5f2
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections