A Combined Approach for Customer Profiling in Video on Demand Services Using Clustering and Association Rule Mining

dc.authoridTurhan, Cigdem/0000-0002-6595-7095
dc.authoridPeker, Serhat/0000-0002-6876-3982
dc.authorid, Sinemmg/0000-0003-4408-9601
dc.authorscopusid57195278688
dc.authorscopusid57192819774
dc.authorscopusid24315330000
dc.authorwosidTurhan, Cigdem/AAG-4445-2019
dc.authorwosidPeker, Serhat/A-9677-2016
dc.contributor.authorGuney, Sinem
dc.contributor.authorPeker, Serhat
dc.contributor.authorTurhan, Cigdem
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T15:41:04Z
dc.date.available2024-07-05T15:41:04Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-temp[Guney, Sinem; Turhan, Cigdem] Atilim Univ, Dept Software Engn, TR-6830 Ankara, Turkey; [Peker, Serhat] Izmir Bakircay Univ, Dept Management Informat Syst, TR-35665 Izmir, Turkeyen_US
dc.descriptionTurhan, Cigdem/0000-0002-6595-7095; Peker, Serhat/0000-0002-6876-3982; , Sinemmg/0000-0003-4408-9601en_US
dc.description.abstractThe purpose of this paper is to propose a combined data mining approach for analyzing and profiling customers in video on demand (VoD) services. The proposed approach integrates clustering and association rule mining. For customer segmentation, the LRFMP model is employed alongside the k-means and Apriori algorithms to generate association rules between the identified customer groups and content genres. The applicability of the proposed approach is demonstrated on real-world data obtained from an Internet protocol television (IPTV) operator. In this way, four main customer groups are identified: "high consuming-valuable subscribers", "less consuming subscribers","less consuming-loyal subscribers" and "disloyal subscribers". In detail, for each group of customers, a different marketing strategy or action is proposed, mainly campaigns, special-day promotions, discounted materials, offering favorite content, etc. Further, genres preferred by these customer segments are extracted using the Apriori algorithm. The results obtained from this case study also show that the proposed approach provides an efficient tool to form different customer segments with specific content rental characteristics, and to generate useful association rules for these distinct groups. The proposed combined approach in this research would be beneficial for IPTV service providers to implement effective CRM and customer-based marketing strategies.en_US
dc.identifier.citation9
dc.identifier.doi10.1109/ACCESS.2020.2992064
dc.identifier.endpage84335en_US
dc.identifier.issn2169-3536
dc.identifier.scopus2-s2.0-85084959479
dc.identifier.scopusqualityQ1
dc.identifier.startpage84326en_US
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2020.2992064
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3417
dc.identifier.volume8en_US
dc.identifier.wosWOS:000549526700008
dc.identifier.wosqualityQ2
dc.institutionauthorTurhan, Çiğdem
dc.institutionauthorPeker, Serhat
dc.language.isoenen_US
dc.publisherIeee-inst Electrical Electronics Engineers incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCustomer segmentationen_US
dc.subjectdata miningen_US
dc.subjectclusteringen_US
dc.subjectassociation rulesen_US
dc.subjectRFM modelen_US
dc.subjectVoD servicesen_US
dc.titleA Combined Approach for Customer Profiling in Video on Demand Services Using Clustering and Association Rule Miningen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationdf768b22-7cc0-4650-882f-5af552c7a5f2
relation.isAuthorOfPublication70a2c9a7-c94d-4227-be09-c233f93d3b2f
relation.isAuthorOfPublication.latestForDiscoverydf768b22-7cc0-4650-882f-5af552c7a5f2
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoveryd86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections