A Paired Learner-Based Approach for Concept Drift Detection and Adaptation in Software Defect Prediction

dc.contributor.author Gangwar, Arvind Kumar
dc.contributor.author Kumar, Sandeep
dc.contributor.author Mishra, Alok
dc.contributor.other Software Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:19:37Z
dc.date.available 2024-07-05T15:19:37Z
dc.date.issued 2021
dc.description Kumar, Dr Sandeep/0000-0003-0747-6776; Kumar, Sandeep/0000-0002-3250-4866; Mishra, Alok/0000-0003-1275-2050; Kumar, Sandeep/0000-0001-9633-407X en_US
dc.description.abstract The early and accurate prediction of defects helps in testing software and therefore leads to an overall higher-quality product. Due to drift in software defect data, prediction model performances may degrade over time. Very few earlier works have investigated the significance of concept drift (CD) in software-defect prediction (SDP). Their results have shown that CD is present in software defect data and tha it has a significant impact on the performance of defect prediction. Motivated from this observation, this paper presents a paired learner-based drift detection and adaptation approach in SDP that dynamically adapts the varying concepts by updating one of the learners in pair. For a given defect dataset, a subset of data modules is analyzed at a time by both learners based on their learning experience from the past. A difference in accuracies of the two is used to detect drift in the data. We perform an evaluation of the presented study using defect datasets collected from the SEACraft and PROMISE data repositories. The experimentation results show that the presented approach successfully detects the concept drift points and performs better compared to existing methods, as is evident from the comparative analysis performed using various performance parameters such as number of drift points, ROC-AUC score, accuracy, and statistical analysis using Wilcoxon signed rank test. en_US
dc.identifier.doi 10.3390/app11146663
dc.identifier.issn 2076-3417
dc.identifier.scopus 2-s2.0-85111559250
dc.identifier.uri https://doi.org/10.3390/app11146663
dc.identifier.uri https://hdl.handle.net/20.500.14411/1996
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Applied Sciences
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject concept drift en_US
dc.subject naive Bayes en_US
dc.subject random forest en_US
dc.subject software defect prediction en_US
dc.subject software quality assurance en_US
dc.title A Paired Learner-Based Approach for Concept Drift Detection and Adaptation in Software Defect Prediction en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kumar, Dr Sandeep/0000-0003-0747-6776
gdc.author.id Kumar, Sandeep/0000-0002-3250-4866
gdc.author.id Mishra, Alok/0000-0003-1275-2050
gdc.author.id Kumar, Sandeep/0000-0001-9633-407X
gdc.author.institutional Mıshra, Alok
gdc.author.scopusid 57226450033
gdc.author.scopusid 57218539729
gdc.author.scopusid 7201441575
gdc.author.wosid Kumar, Dr Sandeep/AAW-6313-2020
gdc.author.wosid Gangwar, Arvind Kumar Kumar/JHT-1207-2023
gdc.author.wosid Kumar, Sandeep/AAW-6570-2020
gdc.author.wosid Mishra, Alok/AAE-2673-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Gangwar, Arvind Kumar; Kumar, Sandeep] Indian Inst Technol Roorkee, Dept Comp Sci & Engn, Roorkee 247667, Uttar Pradesh, India; [Mishra, Alok] Molde Univ Coll Specialized Univ Logist, Fac Logist, N-6410 Molde, Norway; [Mishra, Alok] Atilim Univ, Dept Software Engn, TR-06830 Ankara, Turkey en_US
gdc.description.issue 14 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 6663
gdc.description.volume 11 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3186811744
gdc.identifier.wos WOS:000675935700001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 2.8366727E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Technology
gdc.oaire.keywords QH301-705.5
gdc.oaire.keywords T
gdc.oaire.keywords Physics
gdc.oaire.keywords QC1-999
gdc.oaire.keywords concept drift
gdc.oaire.keywords Engineering (General). Civil engineering (General)
gdc.oaire.keywords naive Bayes
gdc.oaire.keywords software defect prediction
gdc.oaire.keywords software quality assurance
gdc.oaire.keywords Chemistry
gdc.oaire.keywords TA1-2040
gdc.oaire.keywords Biology (General)
gdc.oaire.keywords QD1-999
gdc.oaire.keywords random forest
gdc.oaire.popularity 5.657391E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.fwci 0.666
gdc.openalex.normalizedpercentile 0.59
gdc.opencitations.count 5
gdc.plumx.crossrefcites 5
gdc.plumx.facebookshareslikecount 163
gdc.plumx.mendeley 18
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.wos.citedcount 3
relation.isAuthorOfPublication de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isAuthorOfPublication.latestForDiscovery de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections