A Study on the Performance of Magnetic Material Identification System by SIFT-BRISK and Neural Network Methods

dc.authoridKaracor, Deniz/0000-0001-6961-8966
dc.authoridERTÜRK, Korhan/0000-0002-1162-2580
dc.authoridKakilli, Adnan/0000-0003-2432-4424
dc.authoridSengul, Gokhan/0000-0003-2273-4411
dc.authorscopusid19638410900
dc.authorscopusid24473589800
dc.authorscopusid36163410900
dc.authorscopusid55767066200
dc.authorscopusid19639054500
dc.authorscopusid54909245800
dc.authorscopusid55361010900
dc.authorwosidSengul, Gokhan/G-8213-2016
dc.authorwosidKaracor, Deniz/AAH-3088-2020
dc.authorwosidKaracor, Deniz/IAO-9194-2023
dc.authorwosidkakilli, adnan/Z-4809-2019
dc.authorwosidçıtak, hakan/AIE-7954-2022
dc.authorwosidEge, Yavuz/AAD-7800-2019
dc.authorwosidERTÜRK, Korhan/P-1521-2018
dc.contributor.authorEge, Yavuz
dc.contributor.authorNazlibilek, Sedat
dc.contributor.authorKakilli, Adnan
dc.contributor.authorCitak, Hakan
dc.contributor.authorKalender, Osman
dc.contributor.authorKaracor, Deniz
dc.contributor.authorSengul, Gokhan
dc.contributor.otherComputer Engineering
dc.contributor.otherDepartment of Mechatronics Engineering
dc.date.accessioned2024-07-05T14:33:02Z
dc.date.available2024-07-05T14:33:02Z
dc.date.issued2015
dc.departmentAtılım Universityen_US
dc.department-temp[Ege, Yavuz] Balikesir Univ, Necatibey Educ Fac, Dept Phys, TR-10100 Balikesir, Turkey; [Nazlibilek, Sedat] Atilim Univ, Dept Mechatron Engn, Fac Engn, TR-06836 Ankara, Turkey; [Kakilli, Adnan] Marmara Univ, Dept Elect Educ, Tech Educ Fac, TR-34722 Istanbul, Turkey; [Citak, Hakan] Balikesir Univ, Balikesir Vocat High Sch, Elect Program, TR-10100 Balikesir, Turkey; [Kalender, Osman] Bursa Orhangazi Univ, Dept Elect Elect Engn, Fac Engn, TR-16000 Bursa, Turkey; [Karacor, Deniz] Ankara Univ, Dept Elect & Elect Engn, Fac Engn, TR-06560 Ankara, Turkey; [Erturk, Korhan Levent] Atilim Univ, Dept Informat Syst Engn, Fac Engn, TR-06836 Ankara, Turkey; [Sengul, Gokhan] Atilim Univ, Dept Comp Engn, Fac Engn, TR-06836 Ankara, Turkeyen_US
dc.descriptionKaracor, Deniz/0000-0001-6961-8966; ERTÜRK, Korhan/0000-0002-1162-2580; Kakilli, Adnan/0000-0003-2432-4424; Sengul, Gokhan/0000-0003-2273-4411en_US
dc.description.abstractIndustry requires low-cost, low-power consumption, and autonomous remote sensing systems for detecting and identifying magnetic materials. Magnetic anomaly detection is one of the methods that meet these requirements. This paper aims to detect and identify magnetic materials by the use of magnetic anomalies of the Earth's magnetic field created by some buried materials. A new measurement system that can determine the images of the upper surfaces of buried magnetic materials is developed. The system consists of a platform whose position is automatically controlled in x-axis and y-axis and a KMZ51 anisotropic magneto-resistive sensor assembly with 24 sensors mounted on the platform. A new identification system based on scale-invariant feature transform (SIFT)-binary robust invariant scalable keypoints (BRISKs) as keypoint and descriptor, respectively, is developed for identification by matching the similar images of magnetic anomalies. The results are compared by the conventional principal component analysis and neural net algorithms. On the six selected samples and the combinations of these samples, 100% correct classification rates were obtained.en_US
dc.identifier.citation5
dc.identifier.doi10.1109/TMAG.2015.2408572
dc.identifier.issn0018-9464
dc.identifier.issn1941-0069
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-84938407991
dc.identifier.urihttps://doi.org/10.1109/TMAG.2015.2408572
dc.identifier.urihttps://hdl.handle.net/20.500.14411/863
dc.identifier.volume51en_US
dc.identifier.wosWOS:000358613900010
dc.identifier.wosqualityQ3
dc.institutionauthorŞengül, Gökhan
dc.institutionauthorNazlıbilek, Sedat
dc.language.isoenen_US
dc.publisherIeee-inst Electrical Electronics Engineers incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBinary robust invariant scalable keypoint (BRISK)en_US
dc.subjectidentificationen_US
dc.subjectmine detectionen_US
dc.subjectneural networksen_US
dc.subjectprincipal component analysis (PCA)en_US
dc.subjectscale-invariant feature transform (SIFT)en_US
dc.titleA Study on the Performance of Magnetic Material Identification System by SIFT-BRISK and Neural Network Methodsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublicationde094a03-1e24-470f-bb3b-db66e9f73b89
relation.isAuthorOfPublication.latestForDiscoveryf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublicatione2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections