A Study on the Performance of Magnetic Material Identification System by Sift-Brisk and Neural Network Methods

dc.authorid Karacor, Deniz/0000-0001-6961-8966
dc.authorid ERTÜRK, Korhan/0000-0002-1162-2580
dc.authorid Kakilli, Adnan/0000-0003-2432-4424
dc.authorid Sengul, Gokhan/0000-0003-2273-4411
dc.authorscopusid 19638410900
dc.authorscopusid 24473589800
dc.authorscopusid 36163410900
dc.authorscopusid 55767066200
dc.authorscopusid 19639054500
dc.authorscopusid 54909245800
dc.authorscopusid 55361010900
dc.authorwosid Sengul, Gokhan/G-8213-2016
dc.authorwosid Karacor, Deniz/AAH-3088-2020
dc.authorwosid Karacor, Deniz/IAO-9194-2023
dc.authorwosid kakilli, adnan/Z-4809-2019
dc.authorwosid çıtak, hakan/AIE-7954-2022
dc.authorwosid Ege, Yavuz/AAD-7800-2019
dc.authorwosid ERTÜRK, Korhan/P-1521-2018
dc.contributor.author Ege, Yavuz
dc.contributor.author Nazlibilek, Sedat
dc.contributor.author Kakilli, Adnan
dc.contributor.author Citak, Hakan
dc.contributor.author Kalender, Osman
dc.contributor.author Karacor, Deniz
dc.contributor.author Sengul, Gokhan
dc.contributor.other Computer Engineering
dc.contributor.other Department of Mechatronics Engineering
dc.date.accessioned 2024-07-05T14:33:02Z
dc.date.available 2024-07-05T14:33:02Z
dc.date.issued 2015
dc.department Atılım University en_US
dc.department-temp [Ege, Yavuz] Balikesir Univ, Necatibey Educ Fac, Dept Phys, TR-10100 Balikesir, Turkey; [Nazlibilek, Sedat] Atilim Univ, Dept Mechatron Engn, Fac Engn, TR-06836 Ankara, Turkey; [Kakilli, Adnan] Marmara Univ, Dept Elect Educ, Tech Educ Fac, TR-34722 Istanbul, Turkey; [Citak, Hakan] Balikesir Univ, Balikesir Vocat High Sch, Elect Program, TR-10100 Balikesir, Turkey; [Kalender, Osman] Bursa Orhangazi Univ, Dept Elect Elect Engn, Fac Engn, TR-16000 Bursa, Turkey; [Karacor, Deniz] Ankara Univ, Dept Elect & Elect Engn, Fac Engn, TR-06560 Ankara, Turkey; [Erturk, Korhan Levent] Atilim Univ, Dept Informat Syst Engn, Fac Engn, TR-06836 Ankara, Turkey; [Sengul, Gokhan] Atilim Univ, Dept Comp Engn, Fac Engn, TR-06836 Ankara, Turkey en_US
dc.description Karacor, Deniz/0000-0001-6961-8966; ERTÜRK, Korhan/0000-0002-1162-2580; Kakilli, Adnan/0000-0003-2432-4424; Sengul, Gokhan/0000-0003-2273-4411 en_US
dc.description.abstract Industry requires low-cost, low-power consumption, and autonomous remote sensing systems for detecting and identifying magnetic materials. Magnetic anomaly detection is one of the methods that meet these requirements. This paper aims to detect and identify magnetic materials by the use of magnetic anomalies of the Earth's magnetic field created by some buried materials. A new measurement system that can determine the images of the upper surfaces of buried magnetic materials is developed. The system consists of a platform whose position is automatically controlled in x-axis and y-axis and a KMZ51 anisotropic magneto-resistive sensor assembly with 24 sensors mounted on the platform. A new identification system based on scale-invariant feature transform (SIFT)-binary robust invariant scalable keypoints (BRISKs) as keypoint and descriptor, respectively, is developed for identification by matching the similar images of magnetic anomalies. The results are compared by the conventional principal component analysis and neural net algorithms. On the six selected samples and the combinations of these samples, 100% correct classification rates were obtained. en_US
dc.identifier.citationcount 5
dc.identifier.doi 10.1109/TMAG.2015.2408572
dc.identifier.issn 0018-9464
dc.identifier.issn 1941-0069
dc.identifier.issue 8 en_US
dc.identifier.scopus 2-s2.0-84938407991
dc.identifier.uri https://doi.org/10.1109/TMAG.2015.2408572
dc.identifier.uri https://hdl.handle.net/20.500.14411/863
dc.identifier.volume 51 en_US
dc.identifier.wos WOS:000358613900010
dc.identifier.wosquality Q3
dc.institutionauthor Şengül, Gökhan
dc.institutionauthor Nazlıbilek, Sedat
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 5
dc.subject Binary robust invariant scalable keypoint (BRISK) en_US
dc.subject identification en_US
dc.subject mine detection en_US
dc.subject neural networks en_US
dc.subject principal component analysis (PCA) en_US
dc.subject scale-invariant feature transform (SIFT) en_US
dc.title A Study on the Performance of Magnetic Material Identification System by Sift-Brisk and Neural Network Methods en_US
dc.type Article en_US
dc.wos.citedbyCount 5
dspace.entity.type Publication
relation.isAuthorOfPublication f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication de094a03-1e24-470f-bb3b-db66e9f73b89
relation.isAuthorOfPublication.latestForDiscovery f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections