Yb/Inse Straddling-Type Tunneling Devices Designed as Photosensors, Mos Capacitors, and Gigahertz Bandstop Filters

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Ieee-inst Electrical Electronics Engineers inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Events

Abstract

In this work, amorphous InSe thin films coated with 30-160-nm-thick SiO2 are used as an active material to fabricate multifunctional devices. The n-InSe/p-SiO2 layers that are deposited onto ytterbium substrates are optically and electrically characterized. It was observed that the coating of SiO2 nanosheets onto the surface of InSe enhances the light absorbability in the near-infrared range without remarkable altering of the bandgap. Significant increase in the steady-state photocurrent values accompanied by faster photocurrent responses resulted from the coating of SiO2 nanosheets. Electrically, while the Yb/InSe/Au channels display tunneling Schottky barrier characteristics, the Yb/InSe/SiO2/Au channels show pn junction features. Both channels displayed metal-oxide-semiconductors (MOS) capacitance-voltage characteristics. In addition, the analyses of the current-voltage characteristics have shown that the currents in the Yb/InSe/Au and Yb/InSe/SiO2 (30 nm)/Au channel are dominated by electric field-assisted thermionic emission (tunneling) of charge carriers through barriers of widths of 18/14 and 30/16 nm under reverse-/forward-biasing conditions, respectively. Further increase in the oxide layer thickness lowered the barrier height of the devices. On the other hand, when an ac signal of low amplitude is imposed through the device channels, the conductance, capacitance, and reflection coefficient spectra displayed bandstop filter characteristics near 1.6 GHz. The microwave cutoff frequency spectra show a remarkable increase in the cutoff frequency values as a result of the coating of InSe with SiO2 nanosheets. The features of the device assure its applicability as rectifying diodes, fast photosensors, MOS capacitors, and microwave bandstop filters.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975; Alfhaid, Latifah/0000-0002-8966-2080; Alfhaid, Latifah/0000-0002-8966-2080

Keywords

Bandstop filter, high absorbance, InSe/SiO2, metal oxide semiconductors (MOS) capacitors, microwave cavity

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Source

Volume

68

Issue

3

Start Page

1093

End Page

1100

Collections