A Comparative Analysis of XGBoost and LightGBM Approaches for Human Activity Recognition: Speed and Accuracy Evaluation

dc.authorscopusid57271674300
dc.authorscopusid59201711600
dc.contributor.authorSezen,A.
dc.contributor.authorTürkmen,G.
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-09-10T21:35:56Z
dc.date.available2024-09-10T21:35:56Z
dc.date.issued2024
dc.departmentAtılım Universityen_US
dc.department-tempSezen A., Atılım University, Faculty of Engineering, Computer Engineering Department, Ankara, 06830, Turkey; Türkmen G., Atılım University, Faculty of Engineering, Computer Engineering Department, Ankara, 06830, Turkeyen_US
dc.description.abstractHuman activity recognition is the process of automatically identifying and classifying human activities based on data collected from different modalities such as wearable sensors, smartphones, or similar devices having necessary sensors or cameras capturing the behavior of the individuals. In this study, XGBoost and LightGBM approaches for human activity recognition are proposed and the performance and execution times of the proposed approaches are compared. The proposed methods on a dataset including accelerometer and gyroscope data acquired using a smartphone for six activities. The activities are laying, sitting, standing, walking, walking downstairs, and walking upstairs. The available dataset is divided into training and test sets, and proposed methods are trained using the training set, and tested on the test sets. At the end of the study, 97.23% accuracy using the LightGBM approach, and 96.67% accuracy using XGBoost is achieved. It is also found that XGBoost is faster than the LightGBM, whenever the execution times are compared. © IJCESEN.en_US
dc.identifier.citation0
dc.identifier.doi10.22399/ijcesen.329
dc.identifier.endpage270en_US
dc.identifier.issn2149-9144
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85197401146
dc.identifier.scopusqualityQ4
dc.identifier.startpage262en_US
dc.identifier.urihttps://doi.org/10.22399/ijcesen.329
dc.identifier.urihttps://hdl.handle.net/20.500.14411/7390
dc.identifier.volume10en_US
dc.identifier.wosqualityN/A
dc.institutionauthorSezen, Arda
dc.institutionauthorTürkmen, Güzin
dc.language.isoenen_US
dc.publisherProf.Dr. İskender AKKURTen_US
dc.relation.ispartofInternational Journal of Computational and Experimental Science and Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHuman Activity Recognitionen_US
dc.subjectLightGBMen_US
dc.subjectXGBoosten_US
dc.titleA Comparative Analysis of XGBoost and LightGBM Approaches for Human Activity Recognition: Speed and Accuracy Evaluationen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication367853fe-83ca-445e-a3be-00c62fcb4e35
relation.isAuthorOfPublication4aaa6f9a-60e2-4552-9c91-208fd7db4150
relation.isAuthorOfPublication.latestForDiscovery367853fe-83ca-445e-a3be-00c62fcb4e35
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections