Biocompatibility of Electrospun Pva-Based Nanocomposite With Chemical Vapor Deposition-Derived Graphene Monolayer

dc.authorscopusid58743992200
dc.authorscopusid57222728850
dc.authorscopusid59521866200
dc.authorscopusid57192108416
dc.contributor.authorSasmazel, Hilal Turkoglu
dc.contributor.authorAlazzawi, Marwa
dc.contributor.authorSadhu, Verra
dc.contributor.authorGozutok, Melike
dc.date.accessioned2025-02-05T18:35:33Z
dc.date.available2025-02-05T18:35:33Z
dc.date.issued2024
dc.departmentAtılım Universityen_US
dc.department-temp[Sasmazel, Hilal Turkoglu] Atilim Univ, Dept Met & Mat Engn, TR-06830 Ankara, Golbasi, Turkiye; [Sadhu, Verra] Univ Beira Interior, Ctr Mech & Aerosp Sci & Technol C MAST, Rua Marques Avila & Bolama, P-6201001 Covilha, Portugal; [Gozutok, Melike] Plasmagear Inc, Head R&D, Montreal, PQ H2V4L5, Canadaen_US
dc.description.abstractThe biocompatibility of electrospun PVA with monolayer graphene obtained by chemical vapor deposition (PVA/CVD-grown MLG) nanocomposite was investigated. The properties of PVA/ CVD-grown MLG nanocomposite were compared with those of electrospun PVA mat. Raman analysis confirmed the presence of graphene monolayer on PVA. Although no significant changes in tensile properties were observed, the electrical conductivity increased from 0.1 (PVA mat) to 0.4 mu S/cm (PVA/ CVD-grown MLG). Thermal stability was also increased, as evidenced by the higher onset temperature and temperature of maximum decomposition rate determined by TGA. The contact angle decreased slightly, which resulted in higher PBS absorption and degradation of the nanocomposite. Water vapor transmission rate (WVTR) decreased from 40 (PVA mat) to 37 g/m2 h (PVA/CVD-grown MLG). Cell culture studies showed better cell viability, population, and growth in the case of PVA/CVD-grown MLG nanocomposite due to improved physical, chemical and mechanical properties.en_US
dc.description.sponsorshipFCT - Fundacao para a Ciencia e a Tecnologia; University of Beira Interior - FCT [CEECINST/00016/2021/CP2828/CT0007]en_US
dc.description.sponsorshipVeera Bhadraiah Sadhu acknowledges FCT - Fundacao para a Ciencia e a Tecnologia and University of Beira Interior for the research contract CEECINST/00016/2021/CP2828/CT0007 under the scope of the CEEC Institutional 2021, funded by FCT.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount0
dc.identifier.doi10.14314/polimery.2024.11.5
dc.identifier.endpage667en_US
dc.identifier.issn0032-2725
dc.identifier.issn2957-0263
dc.identifier.issue2025-08-07 00:00:00en_US
dc.identifier.scopus2-s2.0-85215558028
dc.identifier.scopusqualityQ3
dc.identifier.startpage657en_US
dc.identifier.urihttps://doi.org/10.14314/polimery.2024.11.5
dc.identifier.urihttps://hdl.handle.net/20.500.14411/10412
dc.identifier.volume69en_US
dc.identifier.wosWOS:001402841300006
dc.identifier.wosqualityQ4
dc.institutionauthorSasmazel, Hilal Turkoglu
dc.language.isoenen_US
dc.publisherLukasiewicz Research Network-industrial Chemistry insten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectelectrospinningen_US
dc.subjectmonolayer grapheneen_US
dc.subjectCVD methoden_US
dc.subjectMG-63 cellen_US
dc.subjectnanocompositesen_US
dc.titleBiocompatibility of Electrospun Pva-Based Nanocomposite With Chemical Vapor Deposition-Derived Graphene Monolayeren_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Collections