Normalized Thermodynamic Model for Intermittent Energy Systems and Application to Solar-Powered Adsorption Cooling Systems

dc.authoridTaylan, Onur/0000-0002-7746-2794
dc.authoridBaker, Derek/0000-0003-4163-1821
dc.authoridTaylan, Onur/0000-0002-7746-2794
dc.authorscopusid36459175300
dc.authorscopusid16041579400
dc.authorscopusid48861577200
dc.authorwosidTaylan, Onur/C-6533-2008
dc.authorwosidBaker, Derek/H-2021-2015
dc.authorwosidTaylan, Onur/H-2977-2015
dc.contributor.authorKaftanoğlu, Bilgin
dc.contributor.authorBaker, Derek K.
dc.contributor.authorKaftanoglu, Bilgin
dc.contributor.otherManufacturing Engineering
dc.date.accessioned2024-07-05T15:10:39Z
dc.date.available2024-07-05T15:10:39Z
dc.date.issued2011
dc.departmentAtılım Universityen_US
dc.department-temp[Taylan, Onur; Baker, Derek K.] Middle East Tech Univ, Dept Mech Engn, TR-06531 Ankara, Turkey; [Kaftanoglu, Bilgin] Atilim Univ, Dept Mfg Engn, Ankara, Turkeyen_US
dc.descriptionTaylan, Onur/0000-0002-7746-2794; Baker, Derek/0000-0003-4163-1821; Taylan, Onur/0000-0002-7746-2794en_US
dc.description.abstractA new normalized model is developed to quantify and explore trends in coincidence of supply and demand in generic intermittent energy systems as key design and operating parameters are varied. This novel model is applied to seasonal-transient simulations for a solar-thermal powered adsorption system with and without heat recovery to investigate the coincidence between the solar-supplied cooling power and cooling load in terms of seasonal solar and loss fractions. Additionally, the system's basic performance trends are investigated as a number of parameters are varied. Results for the conditions explored include the following. The solar fraction increases and the loss fraction decreases with increases in storage capacity, and both fractions decrease with increases in maximum bed temperature. The required evacuated tube collector area is smaller than the flat plate collector area while the required mass of adsorbent is independent of collector and adsorption cycle types. Simulation results also show the effects of operating conditions and several design parameters on the system's COP.en_US
dc.description.sponsorshipScientific & Technological Research Council of Turkey (TUBITAK) [105M244]en_US
dc.description.sponsorshipThis work is supported by The Scientific & Technological Research Council of Turkey (TUBITAK) project 105M244. The authors would also like to thank Dr. Cemil Yamali, Ismail Solmus and Ahmet Caglar for their contributions to the experimental parts of this project that motivated this modeling work.en_US
dc.identifier.citation1
dc.identifier.doi10.5541/ijot.289
dc.identifier.endpage115en_US
dc.identifier.issn1301-9724
dc.identifier.issn2146-1511
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-80052175506
dc.identifier.scopusqualityQ4
dc.identifier.startpage107en_US
dc.identifier.urihttps://doi.org/10.5541/ijot.289
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1346
dc.identifier.volume14en_US
dc.identifier.wosWOS:000216688600002
dc.language.isoenen_US
dc.publisherint Center Applied thermodynamicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAdsorption coolingen_US
dc.subjectcoincidenceen_US
dc.subjectdemanden_US
dc.subjectnormalized modelen_US
dc.subjectsmart griden_US
dc.subjectsupplyen_US
dc.titleNormalized Thermodynamic Model for Intermittent Energy Systems and Application to Solar-Powered Adsorption Cooling Systemsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication6a16f0d1-a867-4770-b8fd-9628467d1eb8
relation.isAuthorOfPublication.latestForDiscovery6a16f0d1-a867-4770-b8fd-9628467d1eb8
relation.isOrgUnitOfPublication9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication.latestForDiscovery9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections