Double Integral Calculus of Variations on Time Scales
dc.authorid | Bohner, Martin/0000-0001-8310-0266 | |
dc.authorscopusid | 7006400381 | |
dc.authorscopusid | 25026129500 | |
dc.authorwosid | Bohner, Martin/C-6877-2011 | |
dc.contributor.author | Bohner, Martin | |
dc.contributor.author | Guseinov, Gusein Sh. | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T14:33:11Z | |
dc.date.available | 2024-07-05T14:33:11Z | |
dc.date.issued | 2007 | |
dc.department | Atılım University | en_US |
dc.department-temp | Univ Missouri, Dept Math & Stat, Rolla, MO 65401 USA; Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description | Bohner, Martin/0000-0001-8310-0266 | en_US |
dc.description.abstract | We consider a version of the double integral calculus of variations on time scales, which includes as special cases the classical two-variable calculus of variations and the discrete two-variable calculus of variations. Necessary and sufficient conditions for a local extremum are established, among them an analogue of the Euler-Lagrange equation. (C) 2007 Elsevier Ltd. All rights reserved. | en_US |
dc.identifier.citationcount | 82 | |
dc.identifier.doi | 10.1016/j.camwa.2006.10.032 | |
dc.identifier.endpage | 57 | en_US |
dc.identifier.issn | 0898-1221 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-34347204156 | |
dc.identifier.startpage | 45 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.camwa.2006.10.032 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/899 | |
dc.identifier.volume | 54 | en_US |
dc.identifier.wos | WOS:000248144000006 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Hüseyin, Hüseyin Şirin | |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-elsevier Science Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 83 | |
dc.subject | time scales | en_US |
dc.subject | partial delta derivatives | en_US |
dc.subject | double delta integrals | en_US |
dc.subject | Euler-Lagrange equation | en_US |
dc.title | Double Integral Calculus of Variations on Time Scales | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 75 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f8b33fd5-3950-431e-a264-4375c09aa84e | |
relation.isAuthorOfPublication.latestForDiscovery | f8b33fd5-3950-431e-a264-4375c09aa84e | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |