Regarding Solid Oxide Fuel Cells Simulation Through Artificial Intelligence: a Neural Networks Application

dc.authoridBaldinelli, Arianna/0000-0002-3867-3417
dc.authoridISKENDEROGLU, Feride Cansu/0000-0003-4083-677X
dc.authoridBarelli, Linda/0000-0002-0177-3289
dc.authorscopusid56768032000
dc.authorscopusid8686981900
dc.authorscopusid35580424400
dc.authorscopusid24467662400
dc.authorscopusid57205219023
dc.authorwosidBaldinelli, Arianna/K-8355-2019
dc.authorwosidBaldinelli, Arianna/K-9691-2019
dc.contributor.authorBaldinelli, Arianna
dc.contributor.authorBarelli, Linda
dc.contributor.authorBidini, Gianni
dc.contributor.authorBonucci, Fabio
dc.contributor.authorIskenderoglu, Feride Cansu
dc.date.accessioned2024-07-05T15:28:48Z
dc.date.available2024-07-05T15:28:48Z
dc.date.issued2019
dc.departmentAtılım Universityen_US
dc.department-temp[Baldinelli, Arianna; Barelli, Linda; Bidini, Gianni] Univ Perugia, Dept Engn, I-06125 Perugia, Italy; [Bonucci, Fabio] VGA Srl, I-06053 Deruta, Italy; [Iskenderoglu, Feride Cansu] Atilim Univ, Dept Energy Syst Engn, TR-06830 Ankara, Turkeyen_US
dc.descriptionBaldinelli, Arianna/0000-0002-3867-3417; ISKENDEROGLU, Feride Cansu/0000-0003-4083-677X; Barelli, Linda/0000-0002-0177-3289en_US
dc.description.abstractBecause of their fuel flexibility, Solid Oxide Fuel Cells (SOFCs) are promising candidates to coach the energy transition. Yet, SOFC performance are markedly affected by fuel composition and operative parameters. In order to optimize SOFC operation and to provide a prompt regulation, reliable performance simulation tools are required. Given the high variability ascribed to the fuel in the wide range of SOFC applications and the high non-linearity of electrochemical systems, the implementation of artificial intelligence techniques, like Artificial Neural Networks (ANNs), is sound. In this paper, several network architectures based on a feedforward-backpropagation algorithm are proposed and trained on experimental data-set issued from tests on commercial NiYSZ/8YSZ/LSCF anode supported planar button cells. The best simulator obtained is a 3-hidden layer ANN (25/22/18 neurons per layer, hyperbolic tangent sigmoid as transfer function, obtained with a gradient descent with adaptive learning rate backpropagation). This shows high accuracy (RMS = 0.67% in the testing phase) and successful application in the forecast of SOFC polarization behaviour in two additional experiments (RMS in the order of 3% is scored, yet it is reduced to about 2% if only the typical operating current density range of real application is considered, from 300 to 500 mA.cm(-2)). Therefore, the neural tool is suitable for system simulation codes/software whether SOFC operating parameters agree with the input ranges (anode feeding composition 0-48%(vol) H-2, 0-38%(vol) CO, 0-45%(vol) CH4, 9-32%(vol) CO2, 0-54%(vol) N-2, specific equivalent hydrogen flow-rate per unit cell active area 10.8-23.6 mL.min(-1).cm(-2), current density 0-1300 mA.cm(-2) and temperature 700-800 degrees C).en_US
dc.description.sponsorshipEUROPEAN UNION'S HORIZON 2020 research and innovation program under project Net-Tools [Agreement-736648]en_US
dc.description.sponsorshipThis research was funded by EUROPEAN UNION'S HORIZON 2020 research and innovation program under project Net-Tools, Grant Agreement-736648.en_US
dc.identifier.citationcount13
dc.identifier.doi10.3390/app9010051
dc.identifier.issn2076-3417
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85059172573
dc.identifier.urihttps://doi.org/10.3390/app9010051
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2844
dc.identifier.volume9en_US
dc.identifier.wosWOS:000456579300051
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.scopus.citedbyCount18
dc.subjectfuel cellsen_US
dc.subjectSOFCen_US
dc.subjectsyngasen_US
dc.subjectlow-carbon fuelsen_US
dc.subjectmodellingen_US
dc.subjectcontrollersen_US
dc.subjectartificial intelligenceen_US
dc.subjectneural networksen_US
dc.subjectenergy systemsen_US
dc.subjectelectricen_US
dc.titleRegarding Solid Oxide Fuel Cells Simulation Through Artificial Intelligence: a Neural Networks Applicationen_US
dc.typeArticleen_US
dc.wos.citedbyCount14
dspace.entity.typePublication

Files

Collections