El yazısı rakam tanıma için yapay sinir ağları tabanlı öznitelik çıkarma

dc.contributor.advisorTora, Hakan
dc.contributor.advisorÖztoprak, Kasım
dc.contributor.authorPirim, Mine Altınay Günler
dc.contributor.otherAirframe and Powerplant Maintenance
dc.date.accessioned2024-07-08T09:42:50Z
dc.date.available2024-07-08T09:42:50Z
dc.date.issued2017
dc.departmentFen Bilimleri Enstitüsü / Mühendislik Sistemlerinin Modellenmesi ve Tasarımı Ana Bilim Dalı / Elektrik Elektronik Bilim Dalı
dc.description.abstractBu tezde, yarı eğitilmiş sinir ağlarının gizli katman çıktı ağırlıklarının öznitelik vektörü olarak kullanılabileceği önerilmektedir. Sinir ağları örüntü tanımada sınıflandırma yapmayı sağlayan bir algotimadır. Bu çalışmada bu gerçeğe ek olarak, yarı eğitilmiş sinir ağlarının gizli katman çıktı vektörlerinin görüntünün öznitelikleri olarak kullanılmasında bir araç olarak kullanılabileceği gösterilmiştir. Sistem ana olarak 3 basamaktan oluşmaktadır: önişlemci, öznitelik çıkarıcı ve sınıflandırıcı. Herbir deneyde sadece sınıflandırıcı katmanı değişmektedir diğer iki katman tüm deneyler için default olarak kullanılmaktadır. Sıfılanırıcı olarak destekçi vektör makinaları, sinir ağları ve Öklid uzaklığı sınıflanıdırıclarından yararlanılmıştır. Önerilen sistem performansını değerlendilmesi MNIST ve USPS denektaşı verikümeleri üzerinde yapılmıştır.
dc.description.abstractBu tezde, yarı eğitilmiş sinir ağlarının gizli katman çıktı ağırlıklarının öznitelik vektörü olarak kullanılabileceği önerilmektedir. Sinir ağları örüntü tanımada sınıflandırma yapmayı sağlayan bir algotimadır. Bu çalışmada bu gerçeğe ek olarak, yarı eğitilmiş sinir ağlarının gizli katman çıktı vektörlerinin görüntünün öznitelikleri olarak kullanılmasında bir araç olarak kullanılabileceği gösterilmiştir. Sistem ana olarak 3 basamaktan oluşmaktadır: önişlemci, öznitelik çıkarıcı ve sınıflandırıcı. Herbir deneyde sadece sınıflandırıcı katmanı değişmektedir diğer iki katman tüm deneyler için default olarak kullanılmaktadır. Sıfılanırıcı olarak destekçi vektör makinaları, sinir ağları ve Öklid uzaklığı sınıflanıdırıclarından yararlanılmıştır. Önerilen sistem performansını değerlendilmesi MNIST ve USPS denektaşı verikümeleri üzerinde yapılmıştır.en
dc.identifier.endpage107
dc.identifier.startpage0
dc.identifier.urihttps://hdl.handle.net/20.500.14411/6152
dc.identifier.yoktezid490329
dc.institutionauthorTora, Hakan
dc.language.isoen
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.subjectElektrik ve Elektronik Mühendisliği
dc.subjectElectrical and Electronics Engineeringen_US
dc.titleEl yazısı rakam tanıma için yapay sinir ağları tabanlı öznitelik çıkarma
dc.titleNeural network based feature extraction for handwritten digit recognitionen_US
dc.typeDoctoral Thesis
dspace.entity.typePublication
relation.isAuthorOfPublication3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isAuthorOfPublication.latestForDiscovery3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isOrgUnitOfPublication0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5
relation.isOrgUnitOfPublication.latestForDiscovery0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
490329 Neural network based feature extraction for handwritten digit recognition.pdf
Size:
4.3 MB
Format:
Adobe Portable Document Format