Isogeometric boundary element formulation for cathodic protection of amphibious vehicles

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Research Projects

Organizational Units

Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

In this study, we propose an isogeometric boundary element formulation for the cathodic protection (CP) modeling for amphibious vehicles which includes the treatment of non-linear boundary conditions. Half-space Green's functions are utilized which leads to the discretization of the hull surface only. Non-Uniform Rational B splines (NURBS) are employed to represent both geometry and field variables to obtain higher accuracy where discontinuous collocation points are utilized to make multi-patch implementation easier. Variable condensation technique is applied to manipulate system matrices in a such way that the solution is iterated only on the surfaces where non-linear boundary conditions are assigned which results in reduced computational cost. The computational performance of the formulation is assessed with different solvers for a representative hull geometry.

Description

Baranoglu, Besim/0000-0003-2005-050X; Cetin, Barbaros/0000-0001-9824-4000

Keywords

BEM, Isogeometric, NURBS, Cathodic protection

Turkish CoHE Thesis Center URL

Citation

0

WoS Q

Q1

Scopus Q

Source

Volume

158

Issue

Start Page

85

End Page

96

Collections