On the Continuity in <i>q</I> of the Family of the Limit <i>q</I>-durrmeyer Operators
dc.authorscopusid | 59011538900 | |
dc.authorscopusid | 35610828900 | |
dc.authorscopusid | 35782583700 | |
dc.contributor.author | Yilmaz, Ovgu Gurel | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.author | Turan, Mehmet | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:22:46Z | |
dc.date.available | 2024-07-05T15:22:46Z | |
dc.date.issued | 2024 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Ostrovska, Sofiya; Turan, Mehmet] Atilim Univ, Dept Math, TR-06830 Ankara, Turkiye; [Yilmaz, Ovgu Gurel] Recep Tayyip Erdogan Univ, Dept Math, TR-53100 Rize, Turkiye | en_US |
dc.description.abstract | This study deals with the one-parameter family {D-q}(q is an element of[0,1]) of Bernstein-type operators introduced by Gupta and called the limit q-Durrmeyer operators. The continuity of this family with respect to the parameter q is examined in two most important topologies of the operator theory, namely, the strong and uniform operator topologies. It is proved that {D-q}(q is an element of[0,1]) is continuous in the strong operator topology for all q is an element of [0, 1]. When it comes to the uniform operator topology, the continuity is preserved solely at q = 0 and fails at all q is an element of (0, 1]. In addition, a few estimates for the distance between two limit q-Durrmeyer operators have been derived in the operator norm on C[0, 1]. | en_US |
dc.identifier.citationcount | 0 | |
dc.identifier.doi | 10.1515/dema-2023-0157 | |
dc.identifier.issn | 0420-1213 | |
dc.identifier.issn | 2391-4661 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85192013288 | |
dc.identifier.uri | https://doi.org/10.1515/dema-2023-0157 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/2239 | |
dc.identifier.volume | 57 | en_US |
dc.identifier.wos | WOS:001207932400001 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Turan, Mehmet | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | de Gruyter Poland Sp Z O O | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 0 | |
dc.subject | q-Durrmeyer operator | en_US |
dc.subject | q-Bernstein operator | en_US |
dc.subject | operator norm | en_US |
dc.subject | strong operator topology | en_US |
dc.subject | uniform operator topology | en_US |
dc.title | On the Continuity in <i>q</I> of the Family of the Limit <i>q</I>-durrmeyer Operators | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 0 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5010d3f8-f1f2-4750-b086-e5b5edacaef7 | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | 5010d3f8-f1f2-4750-b086-e5b5edacaef7 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |