The <i>q</i>-Bernstein polynomials of the Cauchy kernel with a pole on [0,1] in the case <i>q</i> &gt; 1

dc.authorscopusid35610828900
dc.authorscopusid9276702800
dc.authorwosidOstrovska, Sofiya/AAA-2156-2020
dc.contributor.authorOstrovska, Sofiya
dc.contributor.authorOzban, Ahmet Yasar
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T14:28:38Z
dc.date.available2024-07-05T14:28:38Z
dc.date.issued2013
dc.departmentAtılım Universityen_US
dc.department-temp[Ostrovska, Sofiya; Ozban, Ahmet Yasar] Atilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.description.abstractThe problem to describe the Bernstein polynomials of unbounded functions goes back to Lorentz. The aim of this paper is to investigate the convergence properties of the q-Bernstein polynomials B-n,B-q(f; x) of the Cauchy kernel 1/x-alpha with a pole alpha is an element of [0, 1] for q > 1. The previously obtained results allow one to describe these properties when a pole is different from q(-m) for some m is an element of {0, 1, 2, ...}. In this context, the focus of the paper is on the behavior of polynomials B-n,B-q(f; x) for the functions of the form f(m)(x) = 1/(x - q(-m)), x not equal q(-m) and f(m)(q(-m)) = a, a is an element of R. Here, the problem is examined both theoretically and numerically in detail. (C) 2013 Elsevier Inc. All rights reserved.en_US
dc.identifier.citation3
dc.identifier.doi10.1016/j.amc.2013.07.034
dc.identifier.endpage747en_US
dc.identifier.issn0096-3003
dc.identifier.issn1873-5649
dc.identifier.scopus2-s2.0-84881433938
dc.identifier.startpage735en_US
dc.identifier.urihttps://doi.org/10.1016/j.amc.2013.07.034
dc.identifier.urihttps://hdl.handle.net/20.500.14411/419
dc.identifier.volume220en_US
dc.identifier.wosWOS:000324558600070
dc.identifier.wosqualityQ1
dc.institutionauthorOstrovska, Sofiya
dc.institutionauthorÖzban, Ahmet Yaşar
dc.language.isoenen_US
dc.publisherElsevier Science incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectq-Integersen_US
dc.subjectq-Bernstein polynomialsen_US
dc.subjectConvergenceen_US
dc.subjectApproximation of unbounded functionsen_US
dc.subjectCauchy kernelen_US
dc.titleThe <i>q</i>-Bernstein polynomials of the Cauchy kernel with a pole on [0,1] in the case <i>q</i> &gt; 1en_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication441f0f87-7ece-46f6-b47b-51c64752df12
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections