The <i>q</I>-bernstein Polynomials of the Cauchy Kernel With a Pole on [0,1] in the Case <i>q</I> &gt; 1

dc.contributor.author Ostrovska, Sofiya
dc.contributor.author Ozban, Ahmet Yasar
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T14:28:38Z
dc.date.available 2024-07-05T14:28:38Z
dc.date.issued 2013
dc.description.abstract The problem to describe the Bernstein polynomials of unbounded functions goes back to Lorentz. The aim of this paper is to investigate the convergence properties of the q-Bernstein polynomials B-n,B-q(f; x) of the Cauchy kernel 1/x-alpha with a pole alpha is an element of [0, 1] for q > 1. The previously obtained results allow one to describe these properties when a pole is different from q(-m) for some m is an element of {0, 1, 2, ...}. In this context, the focus of the paper is on the behavior of polynomials B-n,B-q(f; x) for the functions of the form f(m)(x) = 1/(x - q(-m)), x not equal q(-m) and f(m)(q(-m)) = a, a is an element of R. Here, the problem is examined both theoretically and numerically in detail. (C) 2013 Elsevier Inc. All rights reserved. en_US
dc.identifier.doi 10.1016/j.amc.2013.07.034
dc.identifier.issn 0096-3003
dc.identifier.issn 1873-5649
dc.identifier.scopus 2-s2.0-84881433938
dc.identifier.uri https://doi.org/10.1016/j.amc.2013.07.034
dc.identifier.uri https://hdl.handle.net/20.500.14411/419
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject q-Integers en_US
dc.subject q-Bernstein polynomials en_US
dc.subject Convergence en_US
dc.subject Approximation of unbounded functions en_US
dc.subject Cauchy kernel en_US
dc.title The <i>q</I>-bernstein Polynomials of the Cauchy Kernel With a Pole on [0,1] in the Case <i>q</I> &gt; 1 en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ostrovska, Sofiya
gdc.author.institutional Özban, Ahmet Yaşar
gdc.author.scopusid 35610828900
gdc.author.scopusid 9276702800
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Ostrovska, Sofiya; Ozban, Ahmet Yasar] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 747 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 735 en_US
gdc.description.volume 220 en_US
gdc.description.wosquality Q1
gdc.identifier.wos WOS:000324558600070
gdc.scopus.citedcount 3
gdc.wos.citedcount 3
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication 441f0f87-7ece-46f6-b47b-51c64752df12
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections