The <i>q</I>-bernstein Polynomials of the Cauchy Kernel With a Pole on [0,1] in the Case <i>q</I> > 1
| dc.contributor.author | Ostrovska, Sofiya | |
| dc.contributor.author | Ozban, Ahmet Yasar | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T14:28:38Z | |
| dc.date.available | 2024-07-05T14:28:38Z | |
| dc.date.issued | 2013 | |
| dc.description.abstract | The problem to describe the Bernstein polynomials of unbounded functions goes back to Lorentz. The aim of this paper is to investigate the convergence properties of the q-Bernstein polynomials B-n,B-q(f; x) of the Cauchy kernel 1/x-alpha with a pole alpha is an element of [0, 1] for q > 1. The previously obtained results allow one to describe these properties when a pole is different from q(-m) for some m is an element of {0, 1, 2, ...}. In this context, the focus of the paper is on the behavior of polynomials B-n,B-q(f; x) for the functions of the form f(m)(x) = 1/(x - q(-m)), x not equal q(-m) and f(m)(q(-m)) = a, a is an element of R. Here, the problem is examined both theoretically and numerically in detail. (C) 2013 Elsevier Inc. All rights reserved. | en_US |
| dc.identifier.doi | 10.1016/j.amc.2013.07.034 | |
| dc.identifier.issn | 0096-3003 | |
| dc.identifier.issn | 1873-5649 | |
| dc.identifier.scopus | 2-s2.0-84881433938 | |
| dc.identifier.uri | https://doi.org/10.1016/j.amc.2013.07.034 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/419 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Science inc | en_US |
| dc.relation.ispartof | Applied Mathematics and Computation | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | q-Integers | en_US |
| dc.subject | q-Bernstein polynomials | en_US |
| dc.subject | Convergence | en_US |
| dc.subject | Approximation of unbounded functions | en_US |
| dc.subject | Cauchy kernel | en_US |
| dc.title | The <i>q</I>-bernstein Polynomials of the Cauchy Kernel With a Pole on [0,1] in the Case <i>q</I> > 1 | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Ostrovska, Sofiya | |
| gdc.author.institutional | Özban, Ahmet Yaşar | |
| gdc.author.scopusid | 35610828900 | |
| gdc.author.scopusid | 9276702800 | |
| gdc.author.wosid | Ostrovska, Sofiya/AAA-2156-2020 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Ostrovska, Sofiya; Ozban, Ahmet Yasar] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
| gdc.description.endpage | 747 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 735 | en_US |
| gdc.description.volume | 220 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W1999152084 | |
| gdc.identifier.wos | WOS:000324558600070 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 2.926331E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 6.737726E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.45 | |
| gdc.openalex.normalizedpercentile | 0.53 | |
| gdc.opencitations.count | 2 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.scopuscites | 3 | |
| gdc.scopus.citedcount | 3 | |
| gdc.wos.citedcount | 3 | |
| relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isAuthorOfPublication | 441f0f87-7ece-46f6-b47b-51c64752df12 | |
| relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |