The <i>q</i>-Bernstein polynomials of the Cauchy kernel with a pole on [0,1] in the case <i>q</i> > 1
dc.authorscopusid | 35610828900 | |
dc.authorscopusid | 9276702800 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.author | Ozban, Ahmet Yasar | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T14:28:38Z | |
dc.date.available | 2024-07-05T14:28:38Z | |
dc.date.issued | 2013 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Ostrovska, Sofiya; Ozban, Ahmet Yasar] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description.abstract | The problem to describe the Bernstein polynomials of unbounded functions goes back to Lorentz. The aim of this paper is to investigate the convergence properties of the q-Bernstein polynomials B-n,B-q(f; x) of the Cauchy kernel 1/x-alpha with a pole alpha is an element of [0, 1] for q > 1. The previously obtained results allow one to describe these properties when a pole is different from q(-m) for some m is an element of {0, 1, 2, ...}. In this context, the focus of the paper is on the behavior of polynomials B-n,B-q(f; x) for the functions of the form f(m)(x) = 1/(x - q(-m)), x not equal q(-m) and f(m)(q(-m)) = a, a is an element of R. Here, the problem is examined both theoretically and numerically in detail. (C) 2013 Elsevier Inc. All rights reserved. | en_US |
dc.identifier.citation | 3 | |
dc.identifier.doi | 10.1016/j.amc.2013.07.034 | |
dc.identifier.endpage | 747 | en_US |
dc.identifier.issn | 0096-3003 | |
dc.identifier.issn | 1873-5649 | |
dc.identifier.scopus | 2-s2.0-84881433938 | |
dc.identifier.startpage | 735 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2013.07.034 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/419 | |
dc.identifier.volume | 220 | en_US |
dc.identifier.wos | WOS:000324558600070 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.institutionauthor | Özban, Ahmet Yaşar | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science inc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | q-Integers | en_US |
dc.subject | q-Bernstein polynomials | en_US |
dc.subject | Convergence | en_US |
dc.subject | Approximation of unbounded functions | en_US |
dc.subject | Cauchy kernel | en_US |
dc.title | The <i>q</i>-Bernstein polynomials of the Cauchy kernel with a pole on [0,1] in the case <i>q</i> > 1 | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication | 441f0f87-7ece-46f6-b47b-51c64752df12 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |