A Comparison of Neural Network Approaches for Network Intrusion Detection

dc.authorid Peker, Serhat/0000-0002-6876-3982
dc.authorscopusid 57207472273
dc.authorscopusid 57192819774
dc.authorwosid Peker, Serhat/A-9677-2016
dc.contributor.author Oney, Mehmet Ugur
dc.contributor.author Peker, Serhat
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T15:41:20Z
dc.date.available 2024-07-05T15:41:20Z
dc.date.issued 2020
dc.department Atılım University en_US
dc.department-temp [Oney, Mehmet Ugur] May Cyber Technol Inc, Ankara, Turkey; [Peker, Serhat] Bakircay Univ, Izmir, Turkey; [Oney, Mehmet Ugur; Peker, Serhat] Atilim Univ, Ankara, Turkey en_US
dc.description Peker, Serhat/0000-0002-6876-3982 en_US
dc.description.abstract Nowadays, network intrusion detection is an important area of research in computer network security, and the use of artificial neural networks (ANNs) have become increasingly popular in this field. Despite this, the research concerning comparison of artificial neural network architectures in the network intrusion detection is a relatively insufficient. To make up for this lack, this study aims to examine the neural network architectures in network intrusion detection to determine which architecture performs best, and to examine the effects of the architectural components, such as optimization functions, activation functions, learning momentum on the performance. For this purpose, 6480 neural networks were generated, their performances were evaluated by conducting a series of experiments on KDD99 dataset, and the results were reported. This study will be a useful reference to researchers and practitioners hoping to use ANNs in network intrusion detection. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/978-3-030-36178-5_49
dc.identifier.endpage 608 en_US
dc.identifier.isbn 9783030361785
dc.identifier.isbn 9783030361778
dc.identifier.issn 2367-4512
dc.identifier.scopus 2-s2.0-85083459839
dc.identifier.scopusquality Q4
dc.identifier.startpage 597 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-030-36178-5_49
dc.identifier.uri https://hdl.handle.net/20.500.14411/3444
dc.identifier.volume 43 en_US
dc.identifier.wos WOS:000678771000049
dc.institutionauthor Peker, Serhat
dc.language.iso en en_US
dc.publisher Springer international Publishing Ag en_US
dc.relation.ispartof International Conference on Artificial Intelligence and Applied Mathematics in Engineering (ICAIAME) -- APR 20-22, 2019 -- Antalya, TURKEY en_US
dc.relation.ispartofseries Lecture Notes on Data Engineering and Communications Technologies
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Network intrusion detection en_US
dc.subject Data mining en_US
dc.subject Data classification en_US
dc.subject Machine learning en_US
dc.subject ANNs en_US
dc.title A Comparison of Neural Network Approaches for Network Intrusion Detection en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 70a2c9a7-c94d-4227-be09-c233f93d3b2f
relation.isAuthorOfPublication.latestForDiscovery 70a2c9a7-c94d-4227-be09-c233f93d3b2f
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections