A Comparison of Neural Network Approaches for Network Intrusion Detection

dc.authoridPeker, Serhat/0000-0002-6876-3982
dc.authorscopusid57207472273
dc.authorscopusid57192819774
dc.authorwosidPeker, Serhat/A-9677-2016
dc.contributor.authorOney, Mehmet Ugur
dc.contributor.authorPeker, Serhat
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T15:41:20Z
dc.date.available2024-07-05T15:41:20Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-temp[Oney, Mehmet Ugur] May Cyber Technol Inc, Ankara, Turkey; [Peker, Serhat] Bakircay Univ, Izmir, Turkey; [Oney, Mehmet Ugur; Peker, Serhat] Atilim Univ, Ankara, Turkeyen_US
dc.descriptionPeker, Serhat/0000-0002-6876-3982en_US
dc.description.abstractNowadays, network intrusion detection is an important area of research in computer network security, and the use of artificial neural networks (ANNs) have become increasingly popular in this field. Despite this, the research concerning comparison of artificial neural network architectures in the network intrusion detection is a relatively insufficient. To make up for this lack, this study aims to examine the neural network architectures in network intrusion detection to determine which architecture performs best, and to examine the effects of the architectural components, such as optimization functions, activation functions, learning momentum on the performance. For this purpose, 6480 neural networks were generated, their performances were evaluated by conducting a series of experiments on KDD99 dataset, and the results were reported. This study will be a useful reference to researchers and practitioners hoping to use ANNs in network intrusion detection.en_US
dc.identifier.citation0
dc.identifier.doi10.1007/978-3-030-36178-5_49
dc.identifier.endpage608en_US
dc.identifier.isbn9783030361785
dc.identifier.isbn9783030361778
dc.identifier.issn2367-4512
dc.identifier.scopus2-s2.0-85083459839
dc.identifier.scopusqualityQ4
dc.identifier.startpage597en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-36178-5_49
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3444
dc.identifier.volume43en_US
dc.identifier.wosWOS:000678771000049
dc.institutionauthorPeker, Serhat
dc.language.isoenen_US
dc.publisherSpringer international Publishing Agen_US
dc.relation.ispartofInternational Conference on Artificial Intelligence and Applied Mathematics in Engineering (ICAIAME) -- APR 20-22, 2019 -- Antalya, TURKEYen_US
dc.relation.ispartofseriesLecture Notes on Data Engineering and Communications Technologies
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNetwork intrusion detectionen_US
dc.subjectData miningen_US
dc.subjectData classificationen_US
dc.subjectMachine learningen_US
dc.subjectANNsen_US
dc.titleA Comparison of Neural Network Approaches for Network Intrusion Detectionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication70a2c9a7-c94d-4227-be09-c233f93d3b2f
relation.isAuthorOfPublication.latestForDiscovery70a2c9a7-c94d-4227-be09-c233f93d3b2f
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoveryd86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections