Solution of Initial Value Problems of Cauchy-Kovalevsky Type in the Space of Generalized Monogenic Functions
dc.authorid | Celebi, Ahmet Okay/0000-0001-5256-1035 | |
dc.authorscopusid | 25030986300 | |
dc.authorscopusid | 6701476307 | |
dc.authorwosid | Celebi, Ahmet Okay/H-9913-2018 | |
dc.authorwosid | Celebi, Ahmet Okay/I-8401-2019 | |
dc.contributor.author | Yüksel, Uğur | |
dc.contributor.author | Celebi, A. Okay | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:12:09Z | |
dc.date.available | 2024-07-05T15:12:09Z | |
dc.date.issued | 2010 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Yueksel, Ugur] Univ Atilim, Dept Math, TR-06836 Ankara, Turkey; [Celebi, A. Okay] Univ Yeditepe, Dept Math, TR-34755 Istanbul, Turkey | en_US |
dc.description | Celebi, Ahmet Okay/0000-0001-5256-1035; | en_US |
dc.description.abstract | This paper deals with the initial value problem of the type partial derivative(t)u(t, x) = Lu(t, x), u(0, x) = u(0)(x) where t is an element of R(0)(+) is the time, x is an element of R(n+1), u(0)(x) is a generalized monogenic function and the operator L, acting on a Clifford-algebra-valued function u(t, x) = Sigma(B) u(B)(t, x)e(B) with real-valued components u(B)(t, x), is defined by Lu(t, x) := Sigma(A,B,i) c(B,i)((A)) (t, x)partial derivative(xi) u(B)(t, x)e(A) + Sigma(A,B) d(B)((A)) (t, x)u(B)(t, x)e(A) + Sigma(A)gA(t,x)e(A). We formulate sufficient conditions on the coefficients of the operator L under which L transforms generalized monogenic functions again into generalized monogenic functions. For such an operator the initial value problem (0.1) is solvable for an arbitrary generalized monogenic initial function u(0) and the solution is also generalized monogenic for each t. | en_US |
dc.identifier.citation | 6 | |
dc.identifier.doi | 10.1007/s00006-010-0200-5 | |
dc.identifier.endpage | 444 | en_US |
dc.identifier.issn | 0188-7009 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-77952321189 | |
dc.identifier.startpage | 427 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00006-010-0200-5 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1541 | |
dc.identifier.volume | 20 | en_US |
dc.identifier.wos | WOS:000277335100018 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Birkhauser verlag Ag | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Initial value problems | en_US |
dc.subject | Cauchy-Kovalevsky theorem | en_US |
dc.subject | interior estimates | en_US |
dc.subject | generalized monogenic functions | en_US |
dc.subject | associated differential operators | en_US |
dc.title | Solution of Initial Value Problems of Cauchy-Kovalevsky Type in the Space of Generalized Monogenic Functions | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8ca5c799-f068-4bab-9e35-9efbee553fca | |
relation.isAuthorOfPublication.latestForDiscovery | 8ca5c799-f068-4bab-9e35-9efbee553fca | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |