Solution of Initial Value Problems of Cauchy-Kovalevsky Type in the Space of Generalized Monogenic Functions

dc.authorid Celebi, Ahmet Okay/0000-0001-5256-1035
dc.authorscopusid 25030986300
dc.authorscopusid 6701476307
dc.authorwosid Celebi, Ahmet Okay/H-9913-2018
dc.authorwosid Celebi, Ahmet Okay/I-8401-2019
dc.contributor.author Yueksel, Ugur
dc.contributor.author Celebi, A. Okay
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:12:09Z
dc.date.available 2024-07-05T15:12:09Z
dc.date.issued 2010
dc.department Atılım University en_US
dc.department-temp [Yueksel, Ugur] Univ Atilim, Dept Math, TR-06836 Ankara, Turkey; [Celebi, A. Okay] Univ Yeditepe, Dept Math, TR-34755 Istanbul, Turkey en_US
dc.description Celebi, Ahmet Okay/0000-0001-5256-1035; en_US
dc.description.abstract This paper deals with the initial value problem of the type partial derivative(t)u(t, x) = Lu(t, x), u(0, x) = u(0)(x) where t is an element of R(0)(+) is the time, x is an element of R(n+1), u(0)(x) is a generalized monogenic function and the operator L, acting on a Clifford-algebra-valued function u(t, x) = Sigma(B) u(B)(t, x)e(B) with real-valued components u(B)(t, x), is defined by Lu(t, x) := Sigma(A,B,i) c(B,i)((A)) (t, x)partial derivative(xi) u(B)(t, x)e(A) + Sigma(A,B) d(B)((A)) (t, x)u(B)(t, x)e(A) + Sigma(A)gA(t,x)e(A). We formulate sufficient conditions on the coefficients of the operator L under which L transforms generalized monogenic functions again into generalized monogenic functions. For such an operator the initial value problem (0.1) is solvable for an arbitrary generalized monogenic initial function u(0) and the solution is also generalized monogenic for each t. en_US
dc.identifier.citationcount 6
dc.identifier.doi 10.1007/s00006-010-0200-5
dc.identifier.endpage 444 en_US
dc.identifier.issn 0188-7009
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-77952321189
dc.identifier.startpage 427 en_US
dc.identifier.uri https://doi.org/10.1007/s00006-010-0200-5
dc.identifier.uri https://hdl.handle.net/20.500.14411/1541
dc.identifier.volume 20 en_US
dc.identifier.wos WOS:000277335100018
dc.identifier.wosquality Q2
dc.institutionauthor Yüksel, Uğur
dc.language.iso en en_US
dc.publisher Birkhauser verlag Ag en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 8
dc.subject Initial value problems en_US
dc.subject Cauchy-Kovalevsky theorem en_US
dc.subject interior estimates en_US
dc.subject generalized monogenic functions en_US
dc.subject associated differential operators en_US
dc.title Solution of Initial Value Problems of Cauchy-Kovalevsky Type in the Space of Generalized Monogenic Functions en_US
dc.type Article en_US
dc.wos.citedbyCount 6
dspace.entity.type Publication
relation.isAuthorOfPublication 8ca5c799-f068-4bab-9e35-9efbee553fca
relation.isAuthorOfPublication.latestForDiscovery 8ca5c799-f068-4bab-9e35-9efbee553fca
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections