Integrable Equations on Time Scales -: Art. No. 113510

No Thumbnail Available

Date

2005

Journal Title

Journal ISSN

Volume Title

Publisher

Amer inst Physics

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Events

Abstract

Integrable systems are usually given in terms of functions of continuous variables (on R), in terms of functions of discrete variables (on Z), and recently in terms of functions of q-variables (on K-q). We formulate the Gel'fand-Dikii (GD) formalism on time scales by using the delta differentiation operator and find more general integrable nonlinear evolutionary equations. In particular they yield integrable equations over integers (difference equations) and over q-numbers (q-difference equations). We formulate the GD formalism also in terms of shift operators for all regular-discrete time scales. We give a method allowing to construct the recursion operators for integrable systems on time scales. Finally, we give a trace formula on time scales and then construct infinitely many conserved quantities (Casimirs) of the integrable systems on time scales. (c) 2005 American Institute of Physics.

Description

Silindir, Burcu/0000-0001-5694-9977; Gurses, Metin/0000-0002-3439-3952

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Source

Volume

46

Issue

11

Start Page

End Page

Collections