Integrable Equations on Time Scales -: Art. No. 113510
No Thumbnail Available
Date
2005
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer inst Physics
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Integrable systems are usually given in terms of functions of continuous variables (on R), in terms of functions of discrete variables (on Z), and recently in terms of functions of q-variables (on K-q). We formulate the Gel'fand-Dikii (GD) formalism on time scales by using the delta differentiation operator and find more general integrable nonlinear evolutionary equations. In particular they yield integrable equations over integers (difference equations) and over q-numbers (q-difference equations). We formulate the GD formalism also in terms of shift operators for all regular-discrete time scales. We give a method allowing to construct the recursion operators for integrable systems on time scales. Finally, we give a trace formula on time scales and then construct infinitely many conserved quantities (Casimirs) of the integrable systems on time scales. (c) 2005 American Institute of Physics.
Description
Silindir, Burcu/0000-0001-5694-9977; Gurses, Metin/0000-0002-3439-3952
Keywords
[No Keyword Available]
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q3
Scopus Q
Source
Volume
46
Issue
11