MHD flow and heat transfer in a lid-driven porous enclosure

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Abstract

The mixed convection flow in a lid-driven square cavity filled with a porous medium under the effect of a magnetic field is studied numerically using the dual reciprocity boundary element method (DRBEM) with Houbolt time integration scheme. Induced magnetic field is also taken into consideration in terms of magnetic potential in solving magnetohydrodynamic (MHD) flow and temperature equations. Effects of the characteristic dimensionless parameters as Darcy (Da), Magnetic Reynolds (Rem), Grashof (Gr) and Hartmann (Ha) numbers, on the flow and heat transfer in the cavity are investigated at the final steady-state. It is found that the decrease in the permeability of porous medium and the increase in the intensity of the applied magnetic field cause the fluid to flow slowly. The convective heat transfer is reduced with an increase in Hartmann number. Magnetic potential circulates throughout the cavity with high magnetic permeability of the fluid. The combination of DRBEM with the Houbolt scheme has the advantage of using considerably small number of boundary elements and large time increments which results in small computational cost for solving the mixed convection MHD flow in a porous cavity. (C) 2013 Elsevier Ltd. All rights reserved.

Description

Pekmen Geridonmez, Bengisen/0000-0002-3073-6284; Tezer-Sezgin, Munevver/0000-0001-5439-3477

Keywords

Mixed convection, Porous medium, MHD, Magnetic potential

Turkish CoHE Thesis Center URL

Fields of Science

Citation

42

WoS Q

Q2

Scopus Q

Source

Volume

89

Issue

Start Page

191

End Page

199

Collections